Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.32 and 6.33, find a \(95 \%\) confidence interval for the proportion two ways: using StatKey or other technology and percentiles from a bootstrap distribution, and using the normal distribution and the formula for standard error. Compare the results. Proportion of home team wins in soccer, using \(\hat{p}=0.583\) with \(n=120\)

Short Answer

Expert verified
The confidence intervals using bootstrap distribution and normal distribution should provide similar results due to the central limit theorem, which states that, with a large enough sample size, the sampling distribution of the mean will be normally distributed. Any minor discrepancy could occur due to approximation when applying the normal distribution or randomness in bootstrap samples, but in general, they should more or less align.

Step by step solution

01

Find Confidence Interval using StatKey or other Technology and Bootstrap Distribution

Use StatKey or other appropriate software to create bootstrap samples and draw a corresponding bootstrap distribution. Then, extract percentiles from the bootstrap distribution to obtain the confidence interval. For a 95% confidence interval, extract the 2.5th percentile and the 97.5th percentile. These represent the lower and upper limits of the confidence interval, respectively.
02

Find Confidence Interval Using Normal Distribution and Standard Error

To calculate the confidence interval using the normal distribution, first find the standard error. The formula for standard error, \(SE\), when dealing with proportions is \(\sqrt{\hat{p}(1-\hat{p})/n}\). Substituting the given, we have \(SE = \sqrt{0.583(1-0.583)/120}\). Next, we find the Z-score that corresponds to a 95% confidence interval, which is approximately 1.96. Then, for the lower limit we calculate \(\hat{p} - Z*SE\) and for the upper limit, we calculate \(\hat{p} + Z*SE\).
03

Compare the Results

Upon receiving both confidence intervals, compare them to verify the similarity. Differences could occur due to the approximation when using the normal distribution and the randomness when using bootstrap samples. They both, however, should give pretty close results.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution above 2.1 if the samples have sizes \(n_{1}=12\) and \(n_{2}=12\).

Use the t-distribution and the given sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distributions are relatively normal. Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1} \neq \mu_{2}\) using the sample results \(\bar{x}_{1}=15.3, s_{1}=11.6\) with \(n_{1}=100\) and \(\bar{x}_{2}=18.4, s_{2}=14.3\) with \(n_{2}=80\).

Metal Tags on Penguins and Survival Data 1.3 on page 10 discusses a study designed to test whether applying metal tags is detrimental to penguins. One variable examined is the survival rate 10 years after tagging. The scientists observed that 10 of the 50 metal tagged penguins survived, compared to 18 of the 50 electronic tagged penguins. Construct a \(90 \%\) confidence interval for the difference in proportion surviving between the metal and electronic tagged penguins \(\left(p_{M}-p_{E}\right)\). Interpret the result.

Exercises 6.192 and 6.193 examine the results of a study \(^{45}\) investigating whether fast food consumption increases one's concentration of phthalates, an ingredient in plastics that has been linked to multiple health problems including hormone disruption. The study included 8,877 people who recorded all the food they ate over a 24 -hour period and then provided a urine sample. Two specific phthalate byproducts were measured (in \(\mathrm{ng} / \mathrm{mL}\) ) in the urine: DEHP and DiNP. Find and interpret a \(95 \%\) confidence interval for the difference, \(\mu_{F}-\mu_{N},\) in mean concentration between people who have eaten fast food in the last 24 hours and those who haven't. The mean concentration of DEHP in the 3095 participants who had eaten fast food was \(\bar{x}_{F}=83.6\) with \(s_{F}=194.7\) while the mean for the 5782 participants who had not eaten fast food was \(\bar{x}_{N}=59.1\) with \(s_{N}=152.1\)

Do Ovulating Women Affect Men's Speech? Studies suggest that when young men interact with a woman who is in the fertile period of her menstrual cycle, they pick up subconsciously on subtle changes in her skin tone, voice, and scent. A study introduced in Exercise \(\mathrm{B} .23\) suggests that men may even change their speech patterns around ovulating women. The men were randomly divided into two groups with one group paired with a woman in the fertile phase of her cycle and the other group with a woman in a different stage of her cycle. The same women were used in the two different stages. For the men paired with a less fertile woman, 38 of the 61 men copied their partner's sentence construction in a task to describe an object. For the men paired with a woman at peak fertility, 30 of the 62 men copied their partner's sentence construction. The experimenters hypothesized that men might be less likely to copy their partner during peak fertility in a (subconscious) attempt to attract more attention to themselves. Use the normal distribution to test at a \(5 \%\) level whether the proportion of men copying sentence structure is less when the woman is at peak fertility.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free