Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use StatKey or other technology to generate a bootstrap distribution of sample proportions and find the standard error for that distribution. Compare the result to the standard error given by the Central Limit Theorem, using the sample proportion as an estimate of the population proportion \(p\). Proportion of survey respondents who say exercise is important, with \(n=1000\) and \(\hat{p}=0.753\)

Short Answer

Expert verified
The exercise does not provide specific numeric outcomes as it requires statistical software to compute the bootstrap standard error. However, the process involves creating bootstrap samples, calculating their sample proportions, calculating the standard error of these proportions, and comparing this with the standard error calculated using the Central Limit Theorem.

Step by step solution

01

Generate Bootstrap Sample

Use a statistical software or technology tool to generate a numerous bootstrap samples. A bootstrap sample is a sample taken with replacement from the original sample, of the same size as the original sample.
02

Calculate Bootstrap Proportions

Calculate the bootstrap proportions. In this case, the proportion of respondents who say exercise is important. Repeat this process for all bootstrap samples.
03

Determine Bootstrap Standard Error

The bootstrap standard error is calculated as the standard deviation of these bootstrap proportions.
04

Calculate Standard Error using CLT

The standard error using the CLT can be calculated by the formula \(SE=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\), where \(\hat{p}\) is the sample proportion (0.753 in this case) and \(n\) is the sample size (1000 in this case).
05

Compare Bootstrap Standard Error and CLT Standard Error

Once both standard errors, from bootstrap and from CLT, are calculated, they can be compared. The value should be relatively close, due to the theoretical base provided by the CLT.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 6.109 to 6.111 , we examine the effect of different inputs on determining the sample size needed. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within ±10 . Within ±5 . Within ±1 . Assume that we use \(\tilde{\sigma}=30\) as our estimate of the standard deviation in each case. Comment on the relationship between the sample size and the margin of error.

A data collection method is described to investigate a difference in means. In each case, determine which data analysis method is more appropriate: paired data difference in means or difference in means with two separate groups. In another study to investigate the effect of women's tears on men, 16 men watch an erotic movie and then half sniff women's tears and half sniff a salt solution while brain activity is monitored.

Plastic microparticles are contaminating the world's shorelines (see Exercise 6.108\()\), and much of this pollution appears to come from fibers from washing polyester clothes. \({ }^{27}\) The worst offender appears to be fleece, and a recent study found that the mean number of polyester fibers discharged into wastewater from washing fleece was 290 fibers per liter of wastewater, with a standard deviation of 87.6 and a sample size of 120 . (a) Find and interpret a \(99 \%\) confidence interval for the mean number of polyester microfibers per liter of wastewater when washing fleece. (b) What is the margin of error? (c) If we want a margin of error of only ±5 with \(99 \%\) confidence, what sample size is needed?

In Exercise \(6.107,\) we see that plastic microparticles are contaminating the world's shorelines and that much of the pollution appears to come from fibers from washing polyester clothes. The same study referenced in Exercise 6.107 also took samples from ocean beaches. Five samples were taken from each of 18 different shorelines worldwide, for a total of 90 samples of size \(250 \mathrm{~mL}\). The mean number of plastic microparticles found per \(250 \mathrm{~mL}\) of sediment was 18.3 with a standard deviation of 8.2 . (a) Find and interpret a \(99 \%\) confidence interval for the mean number of polyester microfibers per \(250 \mathrm{~mL}\) of beach sediment. (b) What is the margin of error? (c) If we want a margin of error of only ±1 with \(99 \%\) confidence, what sample size is needed?

Infections in the ICU and Gender In the dataset ICUAdmissions, the variable Infection indicates whether the ICU (Intensive Care Unit) patient had an infection (1) or not (0) and the variable Sex gives the gender of the patient ( 0 for males and 1 for females.) Use technology to test at a \(5 \%\) level whether there is a difference between males and females in the proportion of ICU patients with an infection.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free