Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use StatKey or other technology to generate a bootstrap distribution of sample proportions and find the standard error for that distribution. Compare the result to the standard error given by the Central Limit Theorem, using the sample proportion as an estimate of the population proportion \(p\). Proportion of lie detector trials in which the technology misses a lie, with \(n=48\) and \(\hat{p}=0.354\)

Short Answer

Expert verified
The process involves performing a bootstrap simulation for the provided lie detector data, then calculating the standard errors from it and comparing it with the Central Limit Theorem's estimated standard error. The two calculated standard errors should be similar, demonstrating the Central Limit Theorem's utility.

Step by step solution

01

Generate Bootstrap Distribution

Using StatKey or similar statistical software, simulate 10000 bootstrap samples of size \(n = 48\) from a binomial distribution where \(\hat{p} = 0.354\). StatKey generates the bootstrap distribution for you, which are the sample proportions from the bootstrap samples.
02

Calculate Standard Error of Bootstrap Distribution

After creating the bootstrap distribution, compute the standard error, which is simply the standard deviation of the bootstrap sample proportions. This calculation is also usually completed by the software used.
03

Calculate Standard Error via Central Limit Theorem

The standard error provided by the Central Limit Theorem can be calculated using the formula: \(SE = \sqrt{\hat{p}(1-\hat{p})/n}\). Where \(\hat{p}\) is the sample proportion and \(n\) is the sample size. Substitute \(\hat{p} = 0.354\) and \(n = 48\) into this formula to get the Central Limit Theorem estimated standard error.
04

Comparing the Two Standard Errors

For the final step, consider the standard error calculated from the bootstrap distribution and the one calculated by the Central Limit Theorem. Generally, both values should be quite comparable, confirming the efficiency of the Central Limit Theorem as a tool for estimating standard errors.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution less than -1.4 if the samples have sizes \(n_{1}=30\) and \(n_{2}=40\)

Using Data 5.1 on page \(375,\) we find a significant difference in the proportion of fruit flies surviving after 13 days between those eating organic potatoes and those eating conventional (not organic) potatoes. ask you to conduct a hypothesis test using additional data from this study. \(^{40}\) In every case, we are testing $$\begin{array}{ll}H_{0}: & p_{o}=p_{c} \\\H_{a}: & p_{o}>p_{c}\end{array}$$ where \(p_{o}\) and \(p_{c}\) represent the proportion of fruit flies alive at the end of the given time frame of those eating organic food and those eating conventional food, respectively. Also, in every case, we have \(n_{1}=n_{2}=500 .\) Show all remaining details in the test, using a \(5 \%\) significance level. Effect of Organic Bananas after 15 Days After 15 days, 345 of the 500 fruit flies eating organic bananas are still alive, while 320 of the 500 eating conventional bananas are still alive.

The dataset ICUAdmissions, introduced in Data 2.3 on page \(69,\) includes information on 200 patients admitted to an Intensive Care Unit. One of the variables, Status, indicates whether each patient lived (indicated with a 0 ) or died (indicated with a 1 ). Use technology and the dataset to construct and interpret a \(95 \%\) confidence interval for the proportion of ICU patients who live.

Metal Tags on Penguins and Length of Foraging Trips Data 1.3 on page 10 discusses a study designed to test whether applying metal tags is detrimental to a penguin, as opposed to applying an electronic tag. One variable examined is the length of foraging trips. Longer foraging trips can jeopardize both breeding success and survival of chicks waiting for food. Mean length of 344 foraging trips for penguins with a metal tag was 12.70 days with a standard deviation of 3.71 days. For those with an electronic tag, the mean was 11.60 days with standard deviation of 4.53 days over 512 trips. Do these data provide evidence that mean foraging trips are longer for penguins with a metal tag? Show all details of the test.

Systolic Blood Pressure and Survival Status Use technology and the ICUAdmissions dataset to find a \(95 \%\) confidence interval for the difference in systolic blood pressure (Systolic) upon admission to the Intensive Care Unit at the hospital based on survival of the patient (Status with 0 indicating the patient lived and 1 indicating the patient died.) Interpret the answer in context. Is "No difference" between those who lived and died a plausible option for the difference in mean systolic blood pressure? Which group had higher systolic blood pressures on arrival?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free