Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A data collection method is described to investigate a difference in means. In each case, determine which data analysis method is more appropriate: paired data difference in means or difference in means with two separate groups. A study investigating the effect of exercise on brain activity recruits sets of identical twins in middle age, in which one twin is randomly assigned to engage in regular exercise and the other doesn't exercise.

Short Answer

Expert verified
The appropriate data analysis method for this study would be the paired data difference in means method.

Step by step solution

01

Analyze the Nature of Data

In the given study, sets of identical twins are used, with one twin randomly assigned to regular exercise and the other to no exercise. Notice that the twins here are not separate groups, instead each pair has an intrinsic connection or 'pairing', particularly because they are identical twins and they are being measured for the same parameter (brain activity).
02

Identify the Appropriate Method

Since pairs of twins were used in the study in order to facilitate the control of other variables besides regular exercise, it is more appropriate to treat the data set as paired data rather than two separate groups. Based on this consideration, the statistical method better suited for this analysis would be 'paired data difference in means' method.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is Gender Bias Influenced by Faculty Gender? Exercise 6.215 describes a study in which science faculty members are asked to recommend a salary for a lab manager applicant. All the faculty members received the same application, with half randomly given a male name and half randomly given a female name. In Exercise \(6.215,\) we see that the applications with female names received a significantly lower recommended salary. Does gender of the evaluator make a difference? In particular, considering only the 64 applications with female names, is the mean recommended salary different depending on the gender of the evaluating faculty member? The 32 male faculty gave a mean starting salary of \(\$ 27,111\) with a standard deviation of \(\$ 6948\) while the 32 female faculty gave a mean starting salary of \(\$ 25,000\) with a standard deviation of \(\$ 7966 .\) Show all details of the test.

Use StatKey or other technology to generate a bootstrap distribution of sample proportions and find the standard error for that distribution. Compare the result to the standard error given by the Central Limit Theorem, using the sample proportion as an estimate of the population proportion \(p\). Proportion of survey respondents who say exercise is important, with \(n=1000\) and \(\hat{p}=0.753\)

Use a t-distribution and the given matched pair sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distribution of the differences is relatively normal. Assume that differences are computed using \(d=x_{1}-x_{2}\). Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1}>\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lllllllllll} \hline \text { Situation } & 1 & 125 & 156 & 132 & 175 & 153 & 148 & 180 & 135 & 168 & 157 \\ \text { Situation } & 2 & 120 & 145 & 142 & 150 & 160 & 148 & 160 & 142 & 162 & 150 \\ \hline \end{array} $$

When we want \(95 \%\) confidence and use the conservative estimate of \(p=0.5,\) we can use the simple formula \(n=1 /(M E)^{2}\) to estimate the sample size needed for a given margin of error ME. In Exercises 6.40 to 6.43, use this formula to determine the sample size needed for the given margin of error. A margin of error of 0.04 .

We saw in Exercise 6.221 on page 466 that drinking tea appears to offer a strong boost to the immune system. In a study extending the results of the study described in that exercise, \(^{58}\) blood samples were taken on five participants before and after one week of drinking about five cups of tea a day (the participants did not drink tea before the study started). The before and after blood samples were exposed to e. coli bacteria, and production of interferon gamma, a molecule that fights bacteria, viruses, and tumors, was measured. Mean production went from \(155 \mathrm{pg} / \mathrm{mL}\) before tea drinking to \(448 \mathrm{pg} / \mathrm{mL}\) after tea drinking. The mean difference for the five subjects is \(293 \mathrm{pg} / \mathrm{mL}\) with a standard deviation in the differences of \(242 .\) The paper implies that the use of the t-distribution is appropriate. (a) Why is it appropriate to use paired data in this analysis? (b) Find and interpret a \(90 \%\) confidence interval for the mean increase in production of interferon gamma after drinking tea for one week.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free