Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A data collection method is described to investigate a difference in means. In each case, determine which data analysis method is more appropriate: paired data difference in means or difference in means with two separate groups. In a study to determine whether the color red increases how attractive men find women, one group of men rate the attractiveness of a woman after seeing her picture on a red background and another group of men rate the same woman after seeing her picture on a white background.

Short Answer

Expert verified
The appropriate data analysis method is the 'difference in means with two separate groups'.

Step by step solution

01

Identifying the Groups

In the given exercise, there are two groups of men rating the attractiveness of the same woman under different background colours - red and white. However, these are two different groups of men, which means each man is not exposed to both variables (red and white backgrounds).
02

Determine the Type of Data

Given that each man is only exposed to one variable, this means that the measurements (ratings) given by one group cannot be paired with those given by another group. Therefore, we don't have paired data.
03

Selecting the Appropriate Data Analysis Method

Since we have two separate groups giving ratings and the data is not paired, the appropriate data analysis method would be 'difference in means with two separate groups'. This method is used when comparing the means of two independent or unrelated groups.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Do Hands Adapt to Water? Researchers in the UK designed a study to determine if skin wrinkled from submersion in water performed better at handling wet objects. \(^{62}\) They gathered 20 participants and had each move a set of wet objects and a set of dry objects before and after submerging their hands in water for 30 minutes (order of trials was randomized). The response is the time (seconds) it took to move the specific set of objects with wrinkled hands minus the time with unwrinkled hands. The mean difference for moving dry objects was 0.85 seconds with a standard deviation of 11.5 seconds. The mean difference for moving wet objects was -15.1 seconds with a standard deviation of 13.4 seconds. (a) Perform the appropriate test to determine if the wrinkled hands were significantly faster than unwrinkled hands at moving dry objects. (b) Perform the appropriate test to determine if the wrinkled hands were significantly faster than unwrinkled hands at moving wet objects.

A data collection method is described to investigate a difference in means. In each case, determine which data analysis method is more appropriate: paired data difference in means or difference in means with two separate groups. To study the effect of women's tears on men, levels of testosterone are measured in 50 men after they sniff women's tears and after they sniff a salt solution. The order of the two treatments was randomized and the study was double-blind.

Use a t-distribution and the given matched pair sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distribution of the differences is relatively normal. Assume that differences are computed using \(d=x_{1}-x_{2}\). Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1}>\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lllllllllll} \hline \text { Situation } & 1 & 125 & 156 & 132 & 175 & 153 & 148 & 180 & 135 & 168 & 157 \\ \text { Situation } & 2 & 120 & 145 & 142 & 150 & 160 & 148 & 160 & 142 & 162 & 150 \\ \hline \end{array} $$

Is Gender Bias Influenced by Faculty Gender? Exercise 6.215 describes a study in which science faculty members are asked to recommend a salary for a lab manager applicant. All the faculty members received the same application, with half randomly given a male name and half randomly given a female name. In Exercise \(6.215,\) we see that the applications with female names received a significantly lower recommended salary. Does gender of the evaluator make a difference? In particular, considering only the 64 applications with female names, is the mean recommended salary different depending on the gender of the evaluating faculty member? The 32 male faculty gave a mean starting salary of \(\$ 27,111\) with a standard deviation of \(\$ 6948\) while the 32 female faculty gave a mean starting salary of \(\$ 25,000\) with a standard deviation of \(\$ 7966 .\) Show all details of the test.

Using the dataset NutritionStudy, we calculate that the average number of grams of fat consumed in a day for the sample of \(n=315\) US adults in the study is \(\bar{x}=77.03\) grams with \(s=33.83\) grams. (a) Find and interpret a \(95 \%\) confidence interval for the average number of fat grams consumed per day by US adults. (b) What is the margin of error? (c) If we want a margin of error of only ±1 , what sample size is needed?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free