Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A data collection method is described to investigate a difference in means. In each case, determine which data analysis method is more appropriate: paired data difference in means or difference in means with two separate groups. To study the effect of sitting with a laptop computer on one's lap on scrotal temperature, 29 men have their scrotal temperature tested before and then after sitting with a laptop for one hour.

Short Answer

Expert verified
The data analysis method more appropriate for this scenario is 'Paired Data Difference in Means' as the measurements have been made under two different conditions on the same group of men.

Step by step solution

01

Understanding the Difference Between the Two Methods

The 'Paired Data Difference in Means' is a method mainly used when the same group is observed under two different conditions or measurements are made on pairs of alike units, sharing some features. On the other hand, the 'Difference in Means with Two Separate Groups' method is used when observations are made on two distinct, independent groups.
02

Observing the Given Data

In the given exercise, it can be observed that the scrotal temperatures of the same group of 29 men are recorded at two different instances, i.e., before and after sitting with a laptop for one hour. No separate or independent groups are mentioned.
03

Aligning Given data with Appropriate Method

Since the measurements are made on the same group under two different conditions, it aligns more with the usage of 'Paired Data Difference in Means' method. This is because we are assessing the impact of a single variable (laptop) on the specified group rather than comparing two distinct groups.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When we want \(95 \%\) confidence and use the conservative estimate of \(p=0.5,\) we can use the simple formula \(n=1 /(M E)^{2}\) to estimate the sample size needed for a given margin of error ME. In Exercises 6.40 to 6.43, use this formula to determine the sample size needed for the given margin of error. A margin of error of 0.01

Metal Tags on Penguins and Length of Foraging Trips Data 1.3 on page 10 discusses a study designed to test whether applying metal tags is detrimental to a penguin, as opposed to applying an electronic tag. One variable examined is the length of foraging trips. Longer foraging trips can jeopardize both breeding success and survival of chicks waiting for food. Mean length of 344 foraging trips for penguins with a metal tag was 12.70 days with a standard deviation of 3.71 days. For those with an electronic tag, the mean was 11.60 days with standard deviation of 4.53 days over 512 trips. Do these data provide evidence that mean foraging trips are longer for penguins with a metal tag? Show all details of the test.

Use the t-distribution to find a confidence interval for a difference in means \(\mu_{1}-\mu_{2}\) given the relevant sample results. Give the best estimate for \(\mu_{1}-\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed. A \(99 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the sample results \(\bar{x}_{1}=501, s_{1}=115, n_{1}=400\) and \(\bar{x}_{2}=469, s_{2}=96, n_{2}=200 .\)

Survival Status and Heart Rate in the ICU The dataset ICUAdmissions contains information on a sample of 200 patients being admitted to the Intensive Care Unit (ICU) at a hospital. One of the variables is HeartRate and another is Status which indicates whether the patient lived (Status \(=0)\) or died (Status \(=1\) ). Use the computer output to give the details of a test to determine whether mean heart rate is different between patients who lived and died. (You should not do any computations. State the hypotheses based on the output, read the p-value off the output, and state the conclusion in context.) Two-sample \(\mathrm{T}\) for HeartRate \(\begin{array}{lrrrr}\text { Status } & \text { N } & \text { Mean } & \text { StDev } & \text { SE Mean } \\ 0 & 160 & 98.5 & 27.0 & 2.1 \\ 1 & 40 & 100.6 & 26.5 & 4.2 \\ \text { Difference } & = & m u(0) & -\operatorname{mu}(1) & \end{array}\) Estimate for difference: -2.13 \(95 \% \mathrm{Cl}\) for difference: (-11.53,7.28) T-Test of difference \(=0\) (vs not \(=\) ): T-Value \(=-0.45\) P-Value \(=0.653\) DF \(=60\)

We examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give a margin of error to estimate a proportion within \(\pm 3 \%\) with \(99 \%\) confidence. With \(95 \%\) confidence. With \(90 \%\) confidence. (Assume no prior knowledge about the population proportion \(p\).) Comment on the relationship between the sample size and the confidence level desired.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free