Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a t-distribution and the given matched pair sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distribution of the differences is relatively normal. Assume that differences are computed using \(d=x_{1}-x_{2}\). Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1}>\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lllllllllll} \hline \text { Situation } & 1 & 125 & 156 & 132 & 175 & 153 & 148 & 180 & 135 & 168 & 157 \\ \text { Situation } & 2 & 120 & 145 & 142 & 150 & 160 & 148 & 160 & 142 & 162 & 150 \\ \hline \end{array} $$

Short Answer

Expert verified
The conclusion on whether to accept or reject the null hypothesis is based on the comparison of the computed t-score to the critical t-value. The exact numerical result is dependent on calculations which are not included here.

Step by step solution

01

Calculate the differences

Start by computing the differences for each matched pair using the formula \(d = x_{1} - x_{2}\). The computed differences will then be used for all subsequent calculations.
02

Calculate the sample mean and sample standard deviation

Next, calculate the sample mean of the computed differences to derive the average difference. The mean difference can be computed using the formula \(\mu_{d} = (1/n) \sum d \), where \(n\) represents the number of pairs. Compute the sample standard deviation of the computed differences using the formula \(\sigma_{d} = \sqrt{(1/n-1) \sum (d - \mu_{d})^{2}}\), to measure the average variability in the differences.
03

Calculate the t-score

Compute the t-score using the formula, \(t = \mu_{d} / (\sigma_{d} / \sqrt{n})\). This value represents how extreme the sample mean is and will later be compared to the critical t-value.
04

Determine the critical t-value

To accept or reject the null hypothesis, find the critical t-value that corresponds to the level of significance (typically 0.05) from a t-distribution table. This value is based on the degrees of freedom, which in this case is given by the formula \(df = n-1\). The critical t-value is the threshold t-value beyond which we reject the null hypothesis.
05

Compare the t-score with the critical t-value

Finally, compare the computed t-score with the critical t-value. If the computed t-value is greater than the critical t-value, the null hypothesis (\(H_{0}:\mu_{1}=\mu_{2}\)) is rejected in favor of the alternative hypothesis (\(H_{a}:\mu_{1}>\mu_{2}\)). If the t-score is less than or equal to the critical t-value, the null hypothesis is not rejected.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What Gives a Small P-value? In each case below, two sets of data are given for a two-tail difference in means test. In each case, which version gives a smaller \(\mathrm{p}\) -value relative to the other? (a) Both options have the same standard deviations and same sample sizes but: Option 1 has: \(\quad \bar{x}_{1}=25 \quad \bar{x}_{2}=23\) $$ \text { Option } 2 \text { has: } \quad \bar{x}_{1}=25 \quad \bar{x}_{2}=11 $$ (b) Both options have the same means \(\left(\bar{x}_{1}=22,\right.\) \(\left.\bar{x}_{2}=17\right)\) and same sample sizes but: Option 1 has: \(\quad s_{1}=15 \quad s_{2}=14\) $$ \text { Option } 2 \text { has: } \quad s_{1}=3 \quad s_{2}=4 $$ (c) Both options have the same means \(\left(\bar{x}_{1}=22,\right.\) \(\left.\bar{x}_{2}=17\right)\) and same standard deviations but: Option 1 has: \(\quad n_{1}=800 \quad n_{2}=1000\) $$ \text { Option } 2 \text { has: } \quad n_{1}=25 \quad n_{2}=30 $$

Split the Bill? Exercise 2.153 on page 105 describes a study to compare the cost of restaurant meals when people pay individually versus splitting the bill as a group. In the experiment half of the people were told they would each be responsible for individual meal costs and the other half were told the cost would be split equally among the six people at the table. The data in SplitBill includes the cost of what each person ordered (in Israeli shekels) and the payment method (Individual or Split). Some summary statistics are provided in Table 6.20 and both distributions are reasonably bell-shaped. Use this information to test (at a \(5 \%\) level ) if there is evidence that the mean cost is higher when people split the bill. You may have done this test using randomizations in Exercise 4.118 on page 302 .

Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution above 2.1 if the samples have sizes \(n_{1}=12\) and \(n_{2}=12\).

Does Red Increase Men's Attraction to Women? Exercise 1.99 on page 44 described a study \(^{46}\) which examines the impact of the color red on how attractive men perceive women to be. In the study, men were randomly divided into two groups and were asked to rate the attractiveness of women on a scale of 1 (not at all attractive) to 9 (extremely attractive). Men in one group were shown pictures of women on a white background while the men in the other group were shown the same pictures of women on a red background. The results are shown in Table 6.14 and the data for both groups are reasonably symmetric with no outliers. To determine the possible effect size of the red background over the white, find and interpret a \(90 \%\) confidence interval for the difference in mean attractiveness rating.

Use the t-distribution to find a confidence interval for a difference in means \(\mu_{1}-\mu_{2}\) given the relevant sample results. Give the best estimate for \(\mu_{1}-\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed. A \(95 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the sample results \(\bar{x}_{1}=5.2, s_{1}=2.7, n_{1}=10\) and \(\bar{x}_{2}=4.9, s_{2}=2.8, n_{2}=8 .\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free