Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a t-distribution and the given matched pair sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distribution of the differences is relatively normal. Assume that differences are computed using \(d=x_{1}-x_{2}\). Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1}<\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lllllllll} \hline \text { Treatment } 1 & 16 & 12 & 18 & 21 & 15 & 11 & 14 & 22 \\ \text { Treatment } 2 & 18 & 20 & 25 & 21 & 19 & 8 & 15 & 20 \\ \hline \end{array} $$

Short Answer

Expert verified
The null hypothesis \(H_{0}: \mu_{1}=\mu_{2}\) is rejected in favor of the alternative hypothesis \(H_{a}: \mu_{1}<\mu_{2}\), with t-statistic \(-2.0366\) and p-value less than \(0.05\). It's suggested that the mean of treatment 1 is less than treatment 2.

Step by step solution

01

Calculate differences

Calculate the differences between each pair of treatments 1 and 2 by using the formula \(d=x_{1}-x_{2}\). So, differences would be \(-2, -8, -7, 0, -4, 3, -1, 2\).
02

Compute mean of differences

Calculate the mean of these differences using the formula \(\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i}\). With the given differences and \(n=8\), the mean of differences, \(\bar{d}\), is \(-2.125\).
03

Calculate standard deviation of differences

Calculate the standard deviation of the differences using the formula \(s_{d} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_{i}-\bar{d})^{2}}\). The standard deviation, \(s_{d}\), of these differences turns out to be approximately \(3.3066\).
04

Compute t-statistic

Calculate the t-statistic using the formula \(t = \frac{\bar{d}}{s_{d}/\sqrt{n}}\). The t-score is \(-2.0366\).
05

Determine p-value

For a one-tailed test with \(n-1=7\) degrees of freedom, the critical t-value for a significance level of \(0.05\) is approximately \(1.895\). The computed t-statistic is less than this, hence, the p-value is less than \(0.05\).
06

Make a decision

Because the p-value is less than \(0.05\), we reject the null hypothesis in favor of the alternative hypothesis, suggesting that there is a significant difference and the mean of treatment 1 is less than treatment 2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Who Eats More Fiber: Males or Females? Use technology and the NutritionStudy dataset to find a \(95 \%\) confidence interval for the difference in number of grams of fiber (Fiber) eaten in a day between males and females. Interpret the answer in context. Is "No difference" between males and females a plausible option for the population difference in mean number of grams of fiber eaten?

Infections in the ICU and Gender In the dataset ICUAdmissions, the variable Infection indicates whether the ICU (Intensive Care Unit) patient had an infection (1) or not (0) and the variable Sex gives the gender of the patient ( 0 for males and 1 for females.) Use technology to test at a \(5 \%\) level whether there is a difference between males and females in the proportion of ICU patients with an infection.

Systolic Blood Pressure and Survival Status Use technology and the ICUAdmissions dataset to find a \(95 \%\) confidence interval for the difference in systolic blood pressure (Systolic) upon admission to the Intensive Care Unit at the hospital based on survival of the patient (Status with 0 indicating the patient lived and 1 indicating the patient died.) Interpret the answer in context. Is "No difference" between those who lived and died a plausible option for the difference in mean systolic blood pressure? Which group had higher systolic blood pressures on arrival?

Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution less than -1.4 if the samples have sizes \(n_{1}=30\) and \(n_{2}=40\)

Can Malaria Parasites Control Mosquito Behavior? Are malaria parasites able to control mosquito behavior to their advantage? A study \(^{43}\) investigated this question by taking mosquitos and giving them the opportunity to have their first "blood meal" from a mouse. The mosquitoes were randomized to either eat from a mouse infected with malaria or an uninfected mouse. At several time points after this, mosquitoes were put into a cage with a human and it was recorded whether or not each mosquito approached the human (presumably to bite, although mosquitoes were caught before biting). Once infected, the malaria parasites in the mosquitoes go through two stages: the Oocyst stage in which the mosquito has been infected but is not yet infectious to others and then the Sporozoite stage in which the mosquito is infectious to others. Malaria parasites would benefit if mosquitoes sought risky blood meals (such as biting a human) less often in the Oocyst stage (because mosquitos are often killed while attempting a blood meal) and more often in the Sporozoite stage after becoming infectious (because this is one of the primary ways in which malaria is transmitted). Does exposing mosquitoes to malaria actually impact their behavior in this way? (a) In the Oocyst stage (after eating from mouse but before becoming infectious), 20 out of 113 mosquitoes in the group exposed to malaria approached the human and 36 out of 117 mosquitoes in the group not exposed to malaria approached the human. Calculate the Z-statistic. (b) Calculate the p-value for testing whether this provides evidence that the proportion of mosquitoes in the Oocyst stage approaching the human is lower in the group exposed to malaria. (c) In the Sporozoite stage (after becoming infectious), 37 out of 149 mosquitoes in the group exposed to malaria approached the human and 14 out of 144 mosquitoes in the group not exposed to malaria approached the human. Calculate the z-statistic. (d) Calculate the p-value for testing whether this provides evidence that the proportion of mosquitoes in the Sporozoite stage approaching the human is higher in the group exposed to malaria. (e) Based on your p-values, make conclusions about what you have learned about mosquito behavior, stage of infection, and exposure to malaria or not. (f) Can we conclude that being exposed to malaria (as opposed to not being exposed to malaria) causes these behavior changes in mosquitoes? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free