Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a t-distribution to find a confidence interval for the difference in means \(\mu_{1}-\mu_{2}\) using the relevant sample results from paired data. Give the best estimate for \(\mu_{1}-\) \(\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using \(d=x_{1}-x_{2}\) A \(95 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lcc} \hline \text { Case } & \text { Situation 1 } & \text { Situation 2 } \\ \hline 1 & 77 & 85 \\ 2 & 81 & 84 \\ 3 & 94 & 91 \\ 4 & 62 & 78 \\ 5 & 70 & 77 \\ 6 & 71 & 61 \\ 7 & 85 & 88 \\ 8 & 90 & 91 \\ \hline \end{array} $$

Short Answer

Expert verified
Based on the provided data and assuming the conditions are met, the best estimate for \(\mu_{1}-\mu_{2}\) is the computed mean difference (\(\overline{d}\)), the computed value as per step 4 is the margin of error, and the lower and upper bounds found in step 5 form the 95% confidence interval.

Step by step solution

01

Compute the differences

As the data is paired, we first need to compute the difference \(d = x_{1} - x_{2}\) for each row or case in the given table. By doing this we are effectively creating a new set of numbers.
02

Compute the summary statistics

Once the differences are calculated, find the mean difference (\(d\)) and the standard deviation of the differences, as these will be used to compute the confidence interval.
03

Find the t-score from table

To compute the confidence interval, we need a t-score, which can be found in any standard statistical reference under the t-distribution table with two-sided values. Since we have 7 degrees of freedom (8 pairs minus 1) and want a 95% confidence interval, the relevant t-score from the t-distribution table is approximately 2.365.
04

Compute the margin of error

The margin of error is computed using the formula \(\overline{d} \pm \) (t-score * standard error). Where standard error is the standard deviation divided by the square root of the sample size, in this case 8.
05

Observe the confidence interval

Finally, we use the computed margin of error to observe the confidence interval for the difference in means. Subtract and add the margin of error from your observed \(\overline{d}\) (mean difference) to find the lower and upper bounds of the 95% confidence interval, respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the endpoints of the t-distribution with \(5 \%\) beyond them in each tail if the samples have sizes \(n_{1}=8\) and \(n_{2}=10\)

A data collection method is described to investigate a difference in means. In each case, determine which data analysis method is more appropriate: paired data difference in means or difference in means with two separate groups. In another study to investigate the effect of women's tears on men, 16 men watch an erotic movie and then half sniff women's tears and half sniff a salt solution while brain activity is monitored.

A data collection method is described to investigate a difference in means. In each case, determine which data analysis method is more appropriate: paired data difference in means or difference in means with two separate groups. A study investigating the effect of exercise on brain activity recruits sets of identical twins in middle age, in which one twin is randomly assigned to engage in regular exercise and the other doesn't exercise.

Using Data 5.1 on page \(375,\) we find a significant difference in the proportion of fruit flies surviving after 13 days between those eating organic potatoes and those eating conventional (not organic) potatoes. ask you to conduct a hypothesis test using additional data from this study. \(^{40}\) In every case, we are testing $$\begin{array}{ll}H_{0}: & p_{o}=p_{c} \\\H_{a}: & p_{o}>p_{c}\end{array}$$ where \(p_{o}\) and \(p_{c}\) represent the proportion of fruit flies alive at the end of the given time frame of those eating organic food and those eating conventional food, respectively. Also, in every case, we have \(n_{1}=n_{2}=500 .\) Show all remaining details in the test, using a \(5 \%\) significance level. Effect of Organic Bananas after 15 Days After 15 days, 345 of the 500 fruit flies eating organic bananas are still alive, while 320 of the 500 eating conventional bananas are still alive.

We saw in Exercise 6.221 on page 466 that drinking tea appears to offer a strong boost to the immune system. In a study extending the results of the study described in that exercise, \(^{58}\) blood samples were taken on five participants before and after one week of drinking about five cups of tea a day (the participants did not drink tea before the study started). The before and after blood samples were exposed to e. coli bacteria, and production of interferon gamma, a molecule that fights bacteria, viruses, and tumors, was measured. Mean production went from \(155 \mathrm{pg} / \mathrm{mL}\) before tea drinking to \(448 \mathrm{pg} / \mathrm{mL}\) after tea drinking. The mean difference for the five subjects is \(293 \mathrm{pg} / \mathrm{mL}\) with a standard deviation in the differences of \(242 .\) The paper implies that the use of the t-distribution is appropriate. (a) Why is it appropriate to use paired data in this analysis? (b) Find and interpret a \(90 \%\) confidence interval for the mean increase in production of interferon gamma after drinking tea for one week.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free