Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a t-distribution to find a confidence interval for the difference in means \(\mu_{1}-\mu_{2}\) using the relevant sample results from paired data. Give the best estimate for \(\mu_{1}-\) \(\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using \(d=x_{1}-x_{2}\) A \(99 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the paired data in the following table:. $$ \begin{array}{lccccc} \hline \text { Case } & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \hline \text { Treatment 1 } & 22 & 28 & 31 & 25 & 28 \\ \text { Treatment 2 } & 18 & 30 & 25 & 21 & 21 \\ \hline \end{array} $$

Short Answer

Expert verified
The 99% confidence interval for \(\mu_{1}-\mu_{2}\) is given by \(\bar{d} \pm t \cdot \frac{s_{d}}{\sqrt{n}}\), where \(\bar{d}\) is the sample mean of the differences, \(t\) is the critical value from the t-distribution for a 99% confidence level, \(s_{d}\) is the sample standard deviation of the differences, and \(n\) is the number of pairs. The actual values depend on the computed mean, standard deviation, and the t-value from the t-distribution.

Step by step solution

01

Calculate Differences

Begin by calculating the difference for each pair in the data. That would mean subtracting each value of Treatment 2 from Treatment 1 to get the 'd' values.
02

Find Sample Mean and Standard Deviation

Once all the differences are calculated, compute the sample mean \(\bar{d}\) and the sample standard deviation \(s_{d}\). This will involve the formulas: \[\bar{d} = \frac{\sum{}d}{n}\] for the mean, where \(n\) is the number of pairs and \(\sum{}d\) is the sum of all 'd' values; and \[s_{d} = \sqrt{\frac{\sum{}(d - \bar{d})^2}{n-1}}\] for the standard deviation.
03

Identify Degrees of Freedom and t-value

The next step is to identify the degrees of freedom and the critical value from the t-distribution. The degrees of freedom are given by \(df = n - 1\). The t-value corresponds to the given 99% confidence level and can be retrieved from a t-distribution table or using statistical software.
04

Calculate Confidence Interval

Finally, using the t-value, calculate the confidence interval for the true mean difference using the formula: \[CI = \bar{d} \pm t \cdot \frac{s_{d}}{\sqrt{n}}\] where the term \(t \cdot \frac{s_{d}}{\sqrt{n}}\) refers to the margin of error.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Metal Tags on Penguins and Length of Foraging Trips Data 1.3 on page 10 discusses a study designed to test whether applying metal tags is detrimental to a penguin, as opposed to applying an electronic tag. One variable examined is the length of foraging trips. Longer foraging trips can jeopardize both breeding success and survival of chicks waiting for food. Mean length of 344 foraging trips for penguins with a metal tag was 12.70 days with a standard deviation of 3.71 days. For those with an electronic tag, the mean was 11.60 days with standard deviation of 4.53 days over 512 trips. Do these data provide evidence that mean foraging trips are longer for penguins with a metal tag? Show all details of the test.

\(\mathbf{6 . 2 2 0}\) Diet Cola and Calcium Exercise B.3 on page 349 introduces a study examining the effect of diet cola consumption on calcium levels in women. A sample of 16 healthy women aged 18 to 40 were randomly assigned to drink 24 ounces of either diet cola or water. Their urine was collected for three hours after ingestion of the beverage and calcium excretion (in \(\mathrm{mg}\) ) was measured. The summary statistics for diet cola are \(\bar{x}_{C}=56.0\) with \(s_{C}=4.93\) and \(n_{C}=8\) and the summary statistics for water are \(\bar{x}_{W}=49.1\) with \(s_{W}=3.64\) and \(n_{W}=8 .\) Figure 6.20 shows dotplots of the data values. Test whether there is evidence that diet cola leaches calcium out of the system, which would increase the amount of calcium in the urine for diet cola drinkers. In Exercise \(\mathrm{B} .3\), we used a randomization distribution to conduct this test. Use a t-distribution here, after first checking that the conditions are met and explaining your reasoning. The data are stored in ColaCalcium.

Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the endpoints of the t-distribution with \(2.5 \%\) beyond them in each tail if the samples have sizes \(n_{1}=15\) and \(n_{2}=25\).

Use Stat Key or other technology to generate a bootstrap distribution of sample differences in means and find the standard error for that distribution. Compare the result to the standard error given by the Central Limit Theorem, using the sample standard deviations as estimates of the population standard deviations. Difference in mean commuting distance (in miles) between commuters in Atlanta and commuters in St. Louis, using \(n_{1}=500, \bar{x}_{1}=18.16,\) and \(s_{1}=13.80\) for Atlanta and \(n_{2}=500, \bar{x}_{2}=14.16,\) and \(s_{2}=10.75\) for St. Louis.

Metal Tags on Penguins and Arrival Dates Data 1.3 on page 10 discusses a study designed to test whether applying a metal tag is detrimental to a penguin, as opposed to applying an electronic tag. One variable examined is the date penguins arrive at the breeding site, with later arrivals hurting breeding success. Arrival date is measured as the number of days after November \(1^{\text {st }}\). Mean arrival date for the 167 times metal-tagged penguins arrived was December \(7^{\text {th }}\left(37\right.\) days after November \(\left.1^{\text {st }}\right)\) with a standard deviation of 38.77 days, while mean arrival date for the 189 times electronic-tagged penguins arrived at the breeding site was November \(21^{\text {st }}(21\) days after November \(\left.1^{\text {st }}\right)\) with a standard deviation of \(27.50 .\) Do these data provide evidence that metal tagged penguins have a later mean arrival time? Show all details of the test.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free