Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the t-distribution and the given sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distributions are relatively normal. Test \(H_{0}: \mu_{A}=\mu_{B}\) vs \(H_{a}: \mu_{A} \neq \mu_{B}\) using the fact that Group A has 8 cases with a mean of 125 and a standard deviation of 18 while Group \(\mathrm{B}\) has 15 cases with a mean of 118 and a standard deviation of 14 .

Short Answer

Expert verified
The final decision about the null hypothesis, whether it is rejected or not, will depend on the results of the t-test via the comparison of the calculated test statistic and the critical value. After careful calculation and comparison, a conclusion can be drawn about whether there is a significant difference between the two groups, Group A and Group B.

Step by step solution

01

Defining Null and Alternative Hypotheses

The null hypothesis \(H_{0}: \mu_{A}=\mu_{B}\) suggests that there is no significant difference between the means of Group A and Group B. The alternative hypothesis \(H_{a}: \mu_{A} \neq \mu_{B}\) states that the means are not equal, indicating there is a significant difference.
02

Calculate the Test Statistic

The test statistic for a two-sample t-test is calculated using the formula: \(t = \frac{(\bar{X}_{A} - \bar{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{\frac{s_{A}^{2}}{n_{A}} + \frac{s_{B}^{2}}{n_{B}}}}\), where \(\bar{X}_{A}\) and \(\bar{X}_{B}\) are the sample means, \(s_{A}^{2}\) and \(s_{B}^{2}\) are the sample variances, and \(n_{A}\) and \(n_{B}\) are the sample sizes for Groups A and B respectively. Substituting the given values: \(t = \frac{(125 - 118) - 0}{\sqrt{\frac{18^{2}}{8} + \frac{14^{2}}{15}}}\)
03

Determine the Critical Value and P-Value

For a 2-tailed t test, and assuming \(\alpha=0.05\) (common in most research settings), we have to find the critical value(s) that divide(s) the center 95% of the t-distribution from the 5% in the tails. The degree of freedom is calculated as \(df=n_{A}+n_{B}-2\), which is 21. Using t-table or software for better precision, we find these critical values and the corresponding p-value to match our calculated t in the previous step.
04

Compare Test Statistic and Critical Value

After calculating the t statistic, we compare this value with the critical value obtained from the t-table. If the calculated t-value is greater than the critical value, we reject the null hypothesis. Conversely, if the calculated t-value is less than the critical value, we fail to reject the null hypothesis.
05

Make a Decision

Based on the comparison between the calculated test statistic and the critical value, a decision is made about the null hypothesis. If the null hypothesis is rejected, it suggests that there is a significant difference between the two groups. If the null hypothesis is not rejected, there is no significant difference between the two groups.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using Data 5.1 on page \(375,\) we find a significant difference in the proportion of fruit flies surviving after 13 days between those eating organic potatoes and those eating conventional (not organic) potatoes. ask you to conduct a hypothesis test using additional data from this study. \(^{40}\) In every case, we are testing $$\begin{array}{ll}H_{0}: & p_{o}=p_{c} \\\H_{a}: & p_{o}>p_{c}\end{array}$$ where \(p_{o}\) and \(p_{c}\) represent the proportion of fruit flies alive at the end of the given time frame of those eating organic food and those eating conventional food, respectively. Also, in every case, we have \(n_{1}=n_{2}=500 .\) Show all remaining details in the test, using a \(5 \%\) significance level. Effect of Organic Potatoes after 20 Days After 20 days, 250 of the 500 fruit flies eating organic potatoes are still alive, while 130 of the 500 eating conventional potatoes are still alive.

Effect of Splitting the Bill Exercise 2.153 on page 105 describes a study to compare the cost of restaurant meals when people pay individually versus splitting the bill as a group. In the experiment half of the people were told they would each be responsible for individual meal costs and the other half were told the cost would be split equally among the six people at the table. The 24 people paying individually had a mean cost of 37.29 Israeli shekels with a standard deviation of 12.54 , while the 24 people splitting the bill had a higher mean cost of 50.92 Israeli shekels with a standard deviation of 14.33. The raw data can be found in SplitBill and both distributions are reasonably bell-shaped. Use this information to find and interpret a \(95 \%\) confidence interval for the difference in mean meal cost between these two situations.

Can Malaria Parasites Control Mosquito Behavior? Are malaria parasites able to control mosquito behavior to their advantage? A study \(^{43}\) investigated this question by taking mosquitos and giving them the opportunity to have their first "blood meal" from a mouse. The mosquitoes were randomized to either eat from a mouse infected with malaria or an uninfected mouse. At several time points after this, mosquitoes were put into a cage with a human and it was recorded whether or not each mosquito approached the human (presumably to bite, although mosquitoes were caught before biting). Once infected, the malaria parasites in the mosquitoes go through two stages: the Oocyst stage in which the mosquito has been infected but is not yet infectious to others and then the Sporozoite stage in which the mosquito is infectious to others. Malaria parasites would benefit if mosquitoes sought risky blood meals (such as biting a human) less often in the Oocyst stage (because mosquitos are often killed while attempting a blood meal) and more often in the Sporozoite stage after becoming infectious (because this is one of the primary ways in which malaria is transmitted). Does exposing mosquitoes to malaria actually impact their behavior in this way? (a) In the Oocyst stage (after eating from mouse but before becoming infectious), 20 out of 113 mosquitoes in the group exposed to malaria approached the human and 36 out of 117 mosquitoes in the group not exposed to malaria approached the human. Calculate the Z-statistic. (b) Calculate the p-value for testing whether this provides evidence that the proportion of mosquitoes in the Oocyst stage approaching the human is lower in the group exposed to malaria. (c) In the Sporozoite stage (after becoming infectious), 37 out of 149 mosquitoes in the group exposed to malaria approached the human and 14 out of 144 mosquitoes in the group not exposed to malaria approached the human. Calculate the z-statistic. (d) Calculate the p-value for testing whether this provides evidence that the proportion of mosquitoes in the Sporozoite stage approaching the human is higher in the group exposed to malaria. (e) Based on your p-values, make conclusions about what you have learned about mosquito behavior, stage of infection, and exposure to malaria or not. (f) Can we conclude that being exposed to malaria (as opposed to not being exposed to malaria) causes these behavior changes in mosquitoes? Why or why not?

Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the endpoints of the t-distribution with \(2.5 \%\) beyond them in each tail if the samples have sizes \(n_{1}=15\) and \(n_{2}=25\).

For each scenario, use the formula to find the standard error of the distribution of differences in sample means, \(\bar{x}_{1}-\bar{x}_{2}\) Samples of size 300 from Population 1 with mean 75 and standard deviation 18 and samples of size 500 from Population 2 with mean 83 and standard deviation 22

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free