Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 6.192 and 6.193 examine the results of a study \(^{45}\) investigating whether fast food consumption increases one's concentration of phthalates, an ingredient in plastics that has been linked to multiple health problems including hormone disruption. The study included 8,877 people who recorded all the food they ate over a 24 -hour period and then provided a urine sample. Two specific phthalate byproducts were measured (in \(\mathrm{ng} / \mathrm{mL}\) ) in the urine: DEHP and DiNP. Find and interpret a \(95 \%\) confidence interval for the difference, \(\mu_{F}-\mu_{N},\) in mean concentration between people who have eaten fast food in the last 24 hours and those who haven't. The mean concentration of DEHP in the 3095 participants who had eaten fast food was \(\bar{x}_{F}=83.6\) with \(s_{F}=194.7\) while the mean for the 5782 participants who had not eaten fast food was \(\bar{x}_{N}=59.1\) with \(s_{N}=152.1\)

Short Answer

Expert verified
The 95% confidence interval for the difference in mean concentration of DEHP between people who have eaten fast food in the last 24 hours and those who haven't is from 13.64 ng/mL to 35.36 ng/mL.

Step by step solution

01

Identify Given Data

First, you need to identify the given data. For the people who have eaten fast food, you have \( n_{F} = 3095, \bar{x}_{F} = 83.6, s_{F} = 194.7 \). For those who have not eaten fast food, you have \( n_{N} = 5782, \bar{x}_{N} = 59.1, s_{N} = 152.1 \). These values will be used to calculate the difference between the two means, along with the standard error for that difference.
02

Calculate Difference Between Means

Next, calculate the difference between the two sample means, \( \bar{x}_{F} - \bar{x}_{N} = 83.6 - 59.1 = 24.5 \) ng/mL. This is the observed difference in mean concentration of DEHP between the two groups.
03

Calculate Standard Error for Difference

The standard error for the difference between two means is given by the formula \[ SE = \sqrt { \frac {s_{F}^2}{n_{F}} + \frac {s_{N}^2}{n_{N}} } \], substituting the given values gives \[ SE = \sqrt { \frac {194.7^2}{3095} + \frac {152.1^2}{5782} } = 5.54 \] ng/mL.
04

Construct Confidence Interval

Lastly, construct the 95% confidence interval for the difference between the means using the formula \[ CI = (\bar{x}_{F} - \bar{x}_{N}) \pm Z*SE \] where Z is the Z-score for desired confidence level (1.96 for 95% confidence level). So \[ CI = 24.5 \pm 1.96*5.54 = 24.5 \pm 10.86 \]. Thus, the 95% confidence interval for the difference between the mean concentrations of DEHP for people who have eaten fast food and those who haven't ranges from 13.64 ng/mL to 35.36 ng/mL.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\mathbf{6 . 2 2 0}\) Diet Cola and Calcium Exercise B.3 on page 349 introduces a study examining the effect of diet cola consumption on calcium levels in women. A sample of 16 healthy women aged 18 to 40 were randomly assigned to drink 24 ounces of either diet cola or water. Their urine was collected for three hours after ingestion of the beverage and calcium excretion (in \(\mathrm{mg}\) ) was measured. The summary statistics for diet cola are \(\bar{x}_{C}=56.0\) with \(s_{C}=4.93\) and \(n_{C}=8\) and the summary statistics for water are \(\bar{x}_{W}=49.1\) with \(s_{W}=3.64\) and \(n_{W}=8 .\) Figure 6.20 shows dotplots of the data values. Test whether there is evidence that diet cola leaches calcium out of the system, which would increase the amount of calcium in the urine for diet cola drinkers. In Exercise \(\mathrm{B} .3\), we used a randomization distribution to conduct this test. Use a t-distribution here, after first checking that the conditions are met and explaining your reasoning. The data are stored in ColaCalcium.

In Exercises 6.150 and \(6.151,\) use StatKey or other technology to generate a bootstrap distribution of sample differences in proportions and find the standard error for that distribution. Compare the result to the value obtained using the formula for the standard error of a difference in proportions from this section. Sample A has a count of 30 successes with \(n=100\) and Sample \(\mathrm{B}\) has a count of 50 successes with \(n=250\).

Metal Tags on Penguins and Survival Data 1.3 on page 10 discusses a study designed to test whether applying metal tags is detrimental to penguins. One variable examined is the survival rate 10 years after tagging. The scientists observed that 10 of the 50 metal tagged penguins survived, compared to 18 of the 50 electronic tagged penguins. Construct a \(90 \%\) confidence interval for the difference in proportion surviving between the metal and electronic tagged penguins \(\left(p_{M}-p_{E}\right)\). Interpret the result.

Football Air Pressure During the NFL's 2014 AFC championship game, officials measured the air pressure on game balls following a tip that one team's balls were under-inflated. In exercise 6.124 we found that the 11 balls measured for the New England Patriots had a mean psi of 11.10 (well below the legal limit) and a standard deviation of 0.40. Patriot supporters could argue that the under-inflated balls were due to the elements and other outside effects. To test this the officials also measured 4 balls from the opposing team (Indianapolis Colts) to be used in comparison and found a mean psi of \(12.63,\) with a standard deviation of 0.12. There is no significant skewness or outliers in the data. Use the t-distribution to determine if the average air pressure in the New England Patriot's balls was significantly less than the average air pressure in the Indianapolis Colt's balls.

For each scenario, use the formula to find the standard error of the distribution of differences in sample means, \(\bar{x}_{1}-\bar{x}_{2}\) Samples of size 300 from Population 1 with mean 75 and standard deviation 18 and samples of size 500 from Population 2 with mean 83 and standard deviation 22

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free