Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Find the relevant sample proportions in each group and the pooled proportion. (b) Complete the hypothesis test using the normal distribution and show all details. Test whether patients getting Treatment \(\mathrm{A}\) are more likely to survive, if 63 out of 82 getting Treatment A survive and 31 out of 67 getting Treatment B survive.

Short Answer

Expert verified
Using obtained sample and pooled proportions perform hypothesis test. If resulting p-value is less than significance level (typically 0.05), then, we reject the null hypothesis, i.e it is likely that patients getting Treatment A are more likely to survive than those getting Treatment B.

Step by step solution

01

Calculate the Relevant Sample Proportions

We have two treatments given, A and B. The proportion of patients surviving for Treatment A is calculated as the number of success cases divided by the sample size. Thus, \( p_A = 63 / 82 \). Likewise, the proportion of patients surviving for Treatment B can be calculated as \( p_B = 31 / 67 \).
02

Calculate the Pooled Proportion

The pooled proportion is found by adding the number of successful cases for both groups and dividing by the combined sample size. Therefore, \( p_{pooled} = (63 + 31) / (82 + 67) \).
03

Perform the Hypothesis Test

The null hypothesis \( H_0 \) is that success rates for treatments A and B are equal. The alternative hypothesis \( H_A \) is that treatment A has a higher success rate than treatment B. In other words, \( H_0: p_A = p_B \) and \( H_A: p_A > p_B \). The z-score can be calculated using the formula \( z = (p_A - p_B) / \sqrt{ p_{pooled} * (1 - p_{pooled}) * [(1 / n_A) + (1 / n_B)] } \) where \( n_A \) and \( n_B \) are the sample sizes for treatments A and B respectively. Once the z-score is calculated, the p-value can be found from standard normal tables.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Survival in the ICU and Infection In the dataset ICUAdmissions, the variable Status indicates whether the ICU (Intensive Care Unit) patient lived (0) or died \((1),\) while the variable Infection indicates whether the patient had an infection ( 1 for yes, 0 for no) at the time of admission to the ICU. Use technology to find a \(95 \%\) confidence interval for the difference in the proportion who die between those with an infection and those without.

We saw in Exercise 6.221 on page 466 that drinking tea appears to offer a strong boost to the immune system. In a study extending the results of the study described in that exercise, \(^{58}\) blood samples were taken on five participants before and after one week of drinking about five cups of tea a day (the participants did not drink tea before the study started). The before and after blood samples were exposed to e. coli bacteria, and production of interferon gamma, a molecule that fights bacteria, viruses, and tumors, was measured. Mean production went from \(155 \mathrm{pg} / \mathrm{mL}\) before tea drinking to \(448 \mathrm{pg} / \mathrm{mL}\) after tea drinking. The mean difference for the five subjects is \(293 \mathrm{pg} / \mathrm{mL}\) with a standard deviation in the differences of \(242 .\) The paper implies that the use of the t-distribution is appropriate. (a) Why is it appropriate to use paired data in this analysis? (b) Find and interpret a \(90 \%\) confidence interval for the mean increase in production of interferon gamma after drinking tea for one week.

We examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within \(\pm 3 \%\) when estimating a proportion. First, find the sample size needed if we have no prior knowledge about the population proportion \(p\). Then find the sample size needed if we have reason to believe that \(p \approx 0.7\). Finally, find the sample size needed if we assume \(p \approx 0.9 .\) Comment on the relationship between the sample size and estimates of \(p\).

Metal Tags on Penguins and Breeding Success Data 1.3 on page 10 discusses a study designed to test whether applying metal tags is detrimental to penguins. Exercise 6.148 investigates the survival rate of the penguins. The scientists also studied the breeding success of the metal- and electronic-tagged penguins. Metal-tagged penguins successfully produced offspring in \(32 \%\) of the 122 total breeding seasons, while the electronic-tagged penguins succeeded in \(44 \%\) of the 160 total breeding seasons. Construct a \(95 \%\) confidence interval for the difference in proportion successfully producing offspring \(\left(p_{M}-p_{E}\right)\). Interpret the result.

Split the Bill? Exercise 2.153 on page 105 describes a study to compare the cost of restaurant meals when people pay individually versus splitting the bill as a group. In the experiment half of the people were told they would each be responsible for individual meal costs and the other half were told the cost would be split equally among the six people at the table. The data in SplitBill includes the cost of what each person ordered (in Israeli shekels) and the payment method (Individual or Split). Some summary statistics are provided in Table 6.20 and both distributions are reasonably bell-shaped. Use this information to test (at a \(5 \%\) level ) if there is evidence that the mean cost is higher when people split the bill. You may have done this test using randomizations in Exercise 4.118 on page 302 .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free