Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.150 and \(6.151,\) use StatKey or other technology to generate a bootstrap distribution of sample differences in proportions and find the standard error for that distribution. Compare the result to the value obtained using the formula for the standard error of a difference in proportions from this section. Sample A has a count of 90 successes with \(n=120\) and Sample \(\mathrm{B}\) has a count of 180 successes with \(n=300\).

Short Answer

Expert verified
The difference in proportions for the samples A and B is 0.15. The standard error of this difference computed using the formula is approximately 0.061. The standard error computed using a bootstrap distribution should be approximately the same, reaffirming the accuracy of the formula.

Step by step solution

01

Calculate the proportions

First, calculate the proportions for both samples A and B. The proportion is given by the number of successes divided by the total number of trials. For sample A, it's \(90/120=0.75\). For sample B, it's \(180/300 = 0.60\). The difference in proportions is \(0.75 - 0.60 = 0.15\).
02

Compute the standard error using the formula

The formula for the standard error of a difference in proportions is \(\sqrt{((p_1(1-p_1))/n_1) + ((p_2(1-p_2))/n_2)}\), where \(p_1\) and \(p_2\) are the proportions of the two samples, and \(n_1\) and \(n_2\) are the sizes of the two samples. Plugging in the calculated proportions and sample sizes gives: \(\sqrt{((0.75)(1-0.75))/120 + ((0.60)(1-0.60))/300} \approx 0.061\)
03

Generate a bootstrap distribution

Using software like StatKey, generate a bootstrap distribution from the observed samples A and B, calculate the difference in proportions for each resample, and compute the standard error of these differences. This simulation-based standard error is likely to be quite close to the standard error computed in step 2, reaffirming the accuracy of the standard error formula.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 6.152 and \(6.153,\) find a \(95 \%\) confidence interval for the difference in proportions two ways: using StatKey or other technology and percentiles from a bootstrap distribution, and using the normal distribution and the formula for standard error. Compare the results. Difference in proportion who favor a gun control proposal, using \(\hat{p}_{f}=0.82\) for 379 out of 460 females and \(\hat{p}_{m}=0.61\) for 318 out of 520 for males. (We found a \(90 \%\) confidence interval for this difference in Exercise 6.144.)

The dataset ICUAdmissions, introduced in Data 2.3 on page \(69,\) includes information on 200 patients admitted to an Intensive Care Unit. One of the variables, Status, indicates whether each patient lived (indicated with a 0 ) or died (indicated with a 1 ). Use technology and the dataset to construct and interpret a \(95 \%\) confidence interval for the proportion of ICU patients who live.

Using Data 5.1 on page \(375,\) we find a significant difference in the proportion of fruit flies surviving after 13 days between those eating organic potatoes and those eating conventional (not organic) potatoes. ask you to conduct a hypothesis test using additional data from this study. \(^{40}\) In every case, we are testing $$\begin{array}{ll}H_{0}: & p_{o}=p_{c} \\\H_{a}: & p_{o}>p_{c}\end{array}$$ where \(p_{o}\) and \(p_{c}\) represent the proportion of fruit flies alive at the end of the given time frame of those eating organic food and those eating conventional food, respectively. Also, in every case, we have \(n_{1}=n_{2}=500 .\) Show all remaining details in the test, using a \(5 \%\) significance level. Effect of Organic Raisins after 20 Days After 20 days, 275 of the 500 fruit flies eating organic raisins are still alive, while 170 of the 500 eating conventional raisins are still alive.

Who Exercises More: Males or Females? The dataset StudentSurvey has information from males and females on the number of hours spent exercising in a typical week. Computer output of descriptive statistics for the number of hours spent exercising, broken down by gender, is given: \(\begin{array}{l}\text { Descriptive Statistics: Exercise } \\ \text { Variable } & \text { Gender } & \mathrm{N} & \text { Mean } & \text { StDev } \\\ \text { Exercise } & \mathrm{F} & 168 & 8.110 & 5.199 \\ & \mathrm{M} & 193 & 9.876 & 6.069\end{array}\) \(\begin{array}{rrrrr}\text { Minimum } & \text { Q1 } & \text { Median } & \text { Q3 } & \text { Maximum } \\ 0.000 & 4.000 & 7.000 & 12.000 & 27.000 \\\ 0.000 & 5.000 & 10.000 & 14.000 & 40.000\end{array}\) (a) How many females are in the dataset? How many males? (b) In the sample, which group exercises more, on average? By how much? (c) Use the summary statistics to compute a \(95 \%\) confidence interval for the difference in mean number of hours spent exercising. Be sure to define any parameters you are estimating. (d) Compare the answer from part (c) to the confidence interval given in the following computer output for the same data: Two-sample \(\mathrm{T}\) for Exercise Gender N Mean StDev SE Mean \(\begin{array}{lllll}\mathrm{F} & 168 & 8.11 & 5.20 & 0.40 \\ \mathrm{M} & 193 & 9.88 & 6.07 & 0.44\end{array}\) Difference \(=\operatorname{mu}(F)-\operatorname{mu}(M)\) Estimate for difference: -1.766 \(95 \%\) Cl for difference: (-2.932,-0.599)

Examine the results of a study \(^{45}\) investigating whether fast food consumption increases one's concentration of phthalates, an ingredient in plastics that has been linked to multiple health problems including hormone disruption. The study included 8,877 people who recorded all the food they ate over a 24 -hour period and then provided a urine sample. Two specific phthalate byproducts were measured (in \(\mathrm{ng} / \mathrm{mL}\) ) in the urine: DEHP and DiNP. Find and interpret a \(95 \%\) confidence interval for the difference, \(\mu_{F}-\mu_{N},\) in mean concentration between people who have eaten fast food in the last 24 hours and those who haven't. The mean concentration of DiNP in the 3095 participants who had eaten fast food was \(\bar{x}_{F}=10.1\) with \(s_{F}=38.9\) while the mean for the 5782 participants who had not eaten fast food was \(\bar{x}_{N}=7.0\) with \(s_{N}=22.8\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free