Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Getting Enough Sleep? It is generally recommended that adults sleep at least 8 hours each night. One of the authors recently asked some of her students (undergraduate and graduate students at Harvard) how many hours each had slept the previous night, curious as to whether her students are getting enough sleep. The data are displayed in Figure 6.13 . The 12 students sampled averaged 6.2 hours of sleep with a standard deviation of 1.70 hours, Assuming this sample is representative of all her students, and assuming students need at least 8 hours of sleep a night, does this provide evidence that, on average, her students are not getting enough sleep?

Short Answer

Expert verified
To conclude whether the students are getting enough sleep, one needs to calculate the test statistic using the given sample mean, standard deviation, and sample size and compare this calculated t-value to the critical t-value for a specified confidence level. Decision will be made based on this comparison.

Step by step solution

01

Define the Hypotheses

The null hypothesis \(H_0\) is that the average student gets enough sleep, expressed as \(H_0: \mu = 8\). The alternative hypothesis \(H_a\), which we are testing, is that the average student does not get enough sleep, expressed as \(H_a: \mu < 8\) . Here, \( \mu \) represents the population mean.
02

Compute the Test Statistic

The test statistic for a one-sample mean test is a t-score, calculated using the formula \(t = \frac{ \overline{X} - \mu_{H_0}}{s / \sqrt{n}}\). Here, \(\overline{X} = 6.2\) is the sample mean, \( \mu_{H_0} = 8\) is the mean under the null hypothesis, \(s = 1.70\) is the sample standard deviation, and \(n = 12\) is the sample size. Plugging these values into the formula, we get \(t = \frac{6.2 - 8}{1.70 / \sqrt{12}}\).
03

Find the Critical Value

The critical value corresponds to a significance level (or alpha) of 0.05 with a sample size of 11 degrees of freedom (since df = n - 1). You can find this value on the t-distribution table or using a t-distribution calculator online. This will be the boundary which will determine whether we reject \(H_0\) or fail to reject \(H_0\).
04

Make the Decision

If the calculated test statistic is less than the critical value, then we reject the null hypothesis, confirming the alternative hypothesis. If not, we fail to reject the null hypothesis, meaning we do not have enough evidence to suggest the students are not getting enough sleep.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise \(6.107,\) we see that plastic microparticles are contaminating the world's shorelines and that much of the pollution appears to come from fibers from washing polyester clothes. The same study referenced in Exercise 6.107 also took samples from ocean beaches. Five samples were taken from each of 18 different shorelines worldwide, for a total of 90 samples of size \(250 \mathrm{~mL}\). The mean number of plastic microparticles found per \(250 \mathrm{~mL}\) of sediment was 18.3 with a standard deviation of 8.2 . (a) Find and interpret a \(99 \%\) confidence interval for the mean number of polyester microfibers per \(250 \mathrm{~mL}\) of beach sediment. (b) What is the margin of error? (c) If we want a margin of error of only ±1 with \(99 \%\) confidence, what sample size is needed?

When we want \(95 \%\) confidence and use the conservative estimate of \(p=0.5,\) we can use the simple formula \(n=1 /(M E)^{2}\) to estimate the sample size needed for a given margin of error ME. In Exercises 6.40 to 6.43, use this formula to determine the sample size needed for the given margin of error. A margin of error of 0.05 .

Using Data 5.1 on page \(375,\) we find a significant difference in the proportion of fruit flies surviving after 13 days between those eating organic potatoes and those eating conventional (not organic) potatoes. ask you to conduct a hypothesis test using additional data from this study. \(^{40}\) In every case, we are testing $$\begin{array}{ll}H_{0}: & p_{o}=p_{c} \\\H_{a}: & p_{o}>p_{c}\end{array}$$ where \(p_{o}\) and \(p_{c}\) represent the proportion of fruit flies alive at the end of the given time frame of those eating organic food and those eating conventional food, respectively. Also, in every case, we have \(n_{1}=n_{2}=500 .\) Show all remaining details in the test, using a \(5 \%\) significance level. Effect of Organic Bananas after 15 Days After 15 days, 345 of the 500 fruit flies eating organic bananas are still alive, while 320 of the 500 eating conventional bananas are still alive.

Use the t-distribution to find a confidence interval for a difference in means \(\mu_{1}-\mu_{2}\) given the relevant sample results. Give the best estimate for \(\mu_{1}-\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed. A \(99 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the sample results \(\bar{x}_{1}=501, s_{1}=115, n_{1}=400\) and \(\bar{x}_{2}=469, s_{2}=96, n_{2}=200 .\)

Can Malaria Parasites Control Mosquito Behavior? Are malaria parasites able to control mosquito behavior to their advantage? A study \(^{43}\) investigated this question by taking mosquitos and giving them the opportunity to have their first "blood meal" from a mouse. The mosquitoes were randomized to either eat from a mouse infected with malaria or an uninfected mouse. At several time points after this, mosquitoes were put into a cage with a human and it was recorded whether or not each mosquito approached the human (presumably to bite, although mosquitoes were caught before biting). Once infected, the malaria parasites in the mosquitoes go through two stages: the Oocyst stage in which the mosquito has been infected but is not yet infectious to others and then the Sporozoite stage in which the mosquito is infectious to others. Malaria parasites would benefit if mosquitoes sought risky blood meals (such as biting a human) less often in the Oocyst stage (because mosquitos are often killed while attempting a blood meal) and more often in the Sporozoite stage after becoming infectious (because this is one of the primary ways in which malaria is transmitted). Does exposing mosquitoes to malaria actually impact their behavior in this way? (a) In the Oocyst stage (after eating from mouse but before becoming infectious), 20 out of 113 mosquitoes in the group exposed to malaria approached the human and 36 out of 117 mosquitoes in the group not exposed to malaria approached the human. Calculate the Z-statistic. (b) Calculate the p-value for testing whether this provides evidence that the proportion of mosquitoes in the Oocyst stage approaching the human is lower in the group exposed to malaria. (c) In the Sporozoite stage (after becoming infectious), 37 out of 149 mosquitoes in the group exposed to malaria approached the human and 14 out of 144 mosquitoes in the group not exposed to malaria approached the human. Calculate the z-statistic. (d) Calculate the p-value for testing whether this provides evidence that the proportion of mosquitoes in the Sporozoite stage approaching the human is higher in the group exposed to malaria. (e) Based on your p-values, make conclusions about what you have learned about mosquito behavior, stage of infection, and exposure to malaria or not. (f) Can we conclude that being exposed to malaria (as opposed to not being exposed to malaria) causes these behavior changes in mosquitoes? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free