Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.109 to 6.111 , we examine the effect of different inputs on determining the sample size needed. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within ±10 . Within ±5 . Within ±1 . Assume that we use \(\tilde{\sigma}=30\) as our estimate of the standard deviation in each case. Comment on the relationship between the sample size and the margin of error.

Short Answer

Expert verified
The margin of error being ±10 results in a sample size of roughly 35. For a margin of error of ±5, the sample size is approximately 138. Lastly, for the smallest margin of error, ±1, the sample size goes up to about 3456. The smaller the margin of error, the larger the sample size needed thus indicating that for more precision a larger sample size is required.

Step by step solution

01

Setup the equation

Firstly, get the z-score, \(Z_{\frac{\alpha}{2}}\), for the desired 95% confidence level. For a two-tail test, the z-score is approximately 1.96. Secondly, solve the formula for the sample size \(n = \frac{(Z_{\frac{\alpha}{2}} \cdot \sigma)^{2}}{E^{2}}\) for each of the three different margin of errors.
02

Calculate sample size for margin of error ±10

Substitute the values into the equation, where \(Z_{\frac{\alpha}{2}}\) is 1.96, \(\sigma\) is 30, and \(E\) is 10. Thus, calculate the sample size, where \(n = \frac{(1.96 \cdot 30)^{2}}{10^{2}}\).
03

Calculate sample size for margin of error ±5

Repeat the previous process but this time use \(E=5\), thus \(n = \frac{(1.96 \cdot 30)^{2}}{5^{2}}\).
04

Calculate sample size for margin of error ±1

Again, substitute the values into the equation, this time with \(E=1\), and solve for \(n\), resulting in \(n = \frac{(1.96 \cdot 30)^{2}}{1^{2}}\).
05

Comment on relationship

After obtaining all results, it can be noticed that the smaller the margin of error, the larger the calculated sample size. This explains that precision comes with the need for a larger sample size as each incremental decrease in margin of error requires an increase in the sample size.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 6.150 and \(6.151,\) use StatKey or other technology to generate a bootstrap distribution of sample differences in proportions and find the standard error for that distribution. Compare the result to the value obtained using the formula for the standard error of a difference in proportions from this section. Sample A has a count of 30 successes with \(n=100\) and Sample \(\mathrm{B}\) has a count of 50 successes with \(n=250\).

Use a t-distribution to find a confidence interval for the difference in means \(\mu_{1}-\mu_{2}\) using the relevant sample results from paired data. Give the best estimate for \(\mu_{1}-\) \(\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using \(d=x_{1}-x_{2}\) A \(95 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lcc} \hline \text { Case } & \text { Situation 1 } & \text { Situation 2 } \\ \hline 1 & 77 & 85 \\ 2 & 81 & 84 \\ 3 & 94 & 91 \\ 4 & 62 & 78 \\ 5 & 70 & 77 \\ 6 & 71 & 61 \\ 7 & 85 & 88 \\ 8 & 90 & 91 \\ \hline \end{array} $$

Metal Tags on Penguins and Length of Foraging Trips Data 1.3 on page 10 discusses a study designed to test whether applying metal tags is detrimental to a penguin, as opposed to applying an electronic tag. One variable examined is the length of foraging trips. Longer foraging trips can jeopardize both breeding success and survival of chicks waiting for food. Mean length of 344 foraging trips for penguins with a metal tag was 12.70 days with a standard deviation of 3.71 days. For those with an electronic tag, the mean was 11.60 days with standard deviation of 4.53 days over 512 trips. Do these data provide evidence that mean foraging trips are longer for penguins with a metal tag? Show all details of the test.

Use the t-distribution and the given sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distributions are relatively normal. Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1} \neq \mu_{2}\) using the sample results \(\bar{x}_{1}=15.3, s_{1}=11.6\) with \(n_{1}=100\) and \(\bar{x}_{2}=18.4, s_{2}=14.3\) with \(n_{2}=80\).

Use the t-distribution to find a confidence interval for a difference in means \(\mu_{1}-\mu_{2}\) given the relevant sample results. Give the best estimate for \(\mu_{1}-\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed. A \(90 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the sample results \(\bar{x}_{1}=10.1, s_{1}=2.3, n_{1}=50\) and \(\bar{x}_{2}=12.4, s_{2}=5.7, n_{2}=50 .\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free