Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercise \(6.107,\) we see that plastic microparticles are contaminating the world's shorelines and that much of the pollution appears to come from fibers from washing polyester clothes. The same study referenced in Exercise 6.107 also took samples from ocean beaches. Five samples were taken from each of 18 different shorelines worldwide, for a total of 90 samples of size \(250 \mathrm{~mL}\). The mean number of plastic microparticles found per \(250 \mathrm{~mL}\) of sediment was 18.3 with a standard deviation of 8.2 . (a) Find and interpret a \(99 \%\) confidence interval for the mean number of polyester microfibers per \(250 \mathrm{~mL}\) of beach sediment. (b) What is the margin of error? (c) If we want a margin of error of only ±1 with \(99 \%\) confidence, what sample size is needed?

Short Answer

Expert verified
The 99% confidence interval will give a range of values within which the true population mean number of polyester microfibers per 250 mL of sediment is likely to fall. The margin of error shows the range of values around our sample mean that our population mean could be. Based on this, an increased sample size will be necessary to achieve a smaller margin of error of ±1, while maintaining the same level of confidence at 99%.

Step by step solution

01

Find and interpret the 99% confidence interval

This can be computed using the formula for confidence intervals: \[CI = x̄ ± Z \frac{σ}{√n}\] Here, x̄ is the sample mean = 18.3, Z is the Z-score which corresponds to the confidence level (for 99% confidence, Z=2.57), σ is the standard deviation = 8.2, n is the sample size = 90. Upon inserting these values into the formula, we should find the confidence interval around the mean.
02

Find the margin of error

The margin of error (E) is essentially the numeric value that is added and subtracted from the mean to achieve the confidence interval. It is found in the equation: \[E = Z \frac{σ}{√n}\]
03

Find the required sample size

Given we want a margin of error (E) of only ±1 with 99% confidence, we can use the formula: \[n = (Z \frac{σ}{E})^2\] Then, depending upon whether we get a whole number or a fraction, we could decide what the minimum required sample size would be. The number of samples has to be a whole number, so if we get a fraction, we will need to round up to the next nearest whole number.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

As part of the same study described in Exercise 6.254 , the researchers also were interested in whether babies preferred singing or speech. Forty-eight of the original fifty infants were exposed to both singing and speech by the same woman. Interest was again measured by the amount of time the baby looked at the woman while she made noise. In this case the mean time while speaking was 66.97 with a standard deviation of \(43.42,\) and the mean for singing was 56.58 with a standard deviation of 31.57 seconds. The mean of the differences was 10.39 more seconds for the speaking treatment with a standard deviation of 55.37 seconds. Perform the appropriate test to determine if this is sufficient evidence to conclude that babies have a preference (either way) between speaking and singing.

Dark Chocolate for Good Health A study \(^{47}\) examines chocolate's effects on blood vessel function in healthy people. In the randomized, doubleblind, placebo-controlled study, 11 people received 46 grams (1.6 ounces) of dark chocolate (which is naturally flavonoid-rich) every day for two weeks, while a control group of 10 people received a placebo consisting of dark chocolate with low flavonoid content. Participants had their vascular health measured (by means of flow-mediated dilation) before and after the two-week study. The increase over the two-week period was measured, with larger numbers indicating greater vascular health. For the group getting the good dark chocolate, the mean increase was 1.3 with a standard deviation of \(2.32,\) while the control group had a mean change of -0.96 with a standard deviation of 1.58 . (a) Explain what "randomized, double-blind, placebo-controlled study" means. (b) Find and interpret a \(95 \%\) confidence interval for the difference in means between the two groups. Be sure to clearly define the parameters you are estimating. You may assume that neither sample shows significant departures from normality. (c) Is it plausible that there is "no difference" between the two kinds of chocolate? Justify your answer using the confidence interval found in \(\operatorname{part}(\mathrm{b})\)

In Exercises 6.203 and \(6.204,\) use Stat Key or other technology to generate a bootstrap distribution of sample differences in means and find the standard error for that distribution. Compare the result to the standard error given by the Central Limit Theorem, using the sample standard deviations as estimates of the population standard deviations. Difference in mean commuting time (in minutes) between commuters in Atlanta and commuters in St. Louis, using \(n_{1}=500, \bar{x}_{1}=29.11,\) and \(s_{1}=20.72\) for Atlanta and \(n_{2}=500, \bar{x}_{2}=21.97,\) and \(s_{2}=14.23\) for St. Louis

Effect of Splitting the Bill Exercise 2.153 on page 105 describes a study to compare the cost of restaurant meals when people pay individually versus splitting the bill as a group. In the experiment half of the people were told they would each be responsible for individual meal costs and the other half were told the cost would be split equally among the six people at the table. The 24 people paying individually had a mean cost of 37.29 Israeli shekels with a standard deviation of 12.54 , while the 24 people splitting the bill had a higher mean cost of 50.92 Israeli shekels with a standard deviation of 14.33. The raw data can be found in SplitBill and both distributions are reasonably bell-shaped. Use this information to find and interpret a \(95 \%\) confidence interval for the difference in mean meal cost between these two situations.

Quebec vs Texas Secession In Example 6.4 on page 408 we analyzed a poll of 800 Quebecers, in which \(28 \%\) thought that the province of Quebec should separate from Canada. Another poll of 500 Texans found that \(18 \%\) thought that the state of Texas should separate from the United States. \({ }^{38}\) (a) In the sample of 800 people, about how many Quebecers thought Quebec should separate from Canada? In the sample of 500 , how many Texans thought Texas should separate from the US? (b) In these two samples, what is the pooled proportion of Texans and Quebecers who want to separate? (c) Can we conclude that the two population proportions differ? Use a two- tailed test and interpret the result.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free