Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.103 and 6.104 , find a \(95 \%\) confidence interval for the mean two ways: using StatKey or other technology and percentiles from a bootstrap distribution, and using the t-distribution and the formula for standard error. Compare the results. Mean distance of a commute for a worker in Atlanta, using data in Commute Atlanta with \(\bar{x}=\) 18.156 miles, \(s=13.798,\) and \(n=500\)

Short Answer

Expert verified
The exact values of the confidence intervals would depend on the exact computations, but as a rough approximation, the results from both methods should be similar and within an acceptable range of one another. Any large discrepancies between the results of the two methods would imply that an error might have occurred during calculations.

Step by step solution

01

Bootstrap Confidence Interval

Use a technology such as StatKey. Input the given data and set the percentile bootstrap confidence interval to 95%. The software will generate a range for the confidence interval.
02

T-Distribution Confidence Interval

Utilize the formula \(\bar{x} \pm t* (\frac{s}{\sqrt{n}})\), where \(\bar{x}\) = 18.156 miles, s = 13.798, and n = 500. The symbol 't*' represents the t-score, which, for a 95% confidence level and degrees of freedom (n-1 = 499), can be gathered from the t-distribution table or a calculator.
03

Calculate Standard Error

Calculate the standard error using the formula \(\frac{s}{\sqrt{n}}\) that will be used in the confidence interval formula.
04

Compute Confidence Interval

Substitute the obtained values into the formula to calculate the low and high bounds of the confidence interval.
05

Compare the Results

Compare the confidence intervals produced from both methods. If they are similar, it validates the accuracy of both methods. If not, there might be an error in one method or the difference might be due to the difference between exact percentile based confidence interval and approximation using t-distribution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Systolic Blood Pressure and Survival Status Use technology and the ICUAdmissions dataset to find a \(95 \%\) confidence interval for the difference in systolic blood pressure (Systolic) upon admission to the Intensive Care Unit at the hospital based on survival of the patient (Status with 0 indicating the patient lived and 1 indicating the patient died.) Interpret the answer in context. Is "No difference" between those who lived and died a plausible option for the difference in mean systolic blood pressure? Which group had higher systolic blood pressures on arrival?

Survival in the ICU and Infection In the dataset ICUAdmissions, the variable Status indicates whether the ICU (Intensive Care Unit) patient lived (0) or died \((1),\) while the variable Infection indicates whether the patient had an infection ( 1 for yes, 0 for no) at the time of admission to the ICU. Use technology to find a \(95 \%\) confidence interval for the difference in the proportion who die between those with an infection and those without.

Quiz Timing A young statistics professor decided to give a quiz in class every week. He was not sure if the quiz should occur at the beginning of class when the students are fresh or at the end of class when they've gotten warmed up with some statistical thinking. Since he was teaching two sections of the same course that performed equally well on past quizzes, he decided to do an experiment. He randomly chose the first class to take the quiz during the second half of the class period (Late) and the other class took the same quiz at the beginning of their hour (Early). He put all of the grades into a data table and ran an analysis to give the results shown below. Use the information from the computer output to give the details of a test to see whether the mean grade depends on the timing of the quiz. (You should not do any computations. State the hypotheses based on the output, read the p-value off the output, and state the conclusion in context.) Two-Sample T-Test and Cl \begin{tabular}{lrrrr} Sample & \(\mathrm{N}\) & Mean & StDev & SE Mean \\ Late & 32 & 22.56 & 5.13 & 0.91 \\ Early & 30 & 19.73 & 6.61 & 1.2 \\ \multicolumn{3}{c} { Difference } & \(=\mathrm{mu}(\) Late \()\) & \(-\mathrm{mu}\) (Early) \end{tabular} Estimate for difference: 2.83 $$ \begin{aligned} &95 \% \mathrm{Cl} \text { for difference: }(-0.20,5.86)\\\ &\text { T-Test of difference }=0(\text { vs } \operatorname{not}=): \text { T-Value }=1.87\\\ &\text { P-Value }=0.066 \quad \mathrm{DF}=54 \end{aligned} $$

Restaurant Bill by Gender In the study described in Exercise 6.224 the diners were also chosen so that half the people at each table were female and half were male. Thus we can also test for a difference in mean meal cost between females \(\left(n_{f}=24, \bar{x}_{f}=44.46, s_{f}=15.48\right)\) and males \(\left(n_{m}=24, \bar{x}_{m}=43.75, s_{m}=14.81\right) .\) Show all details for doing this test.

Close Confidants and Social Networking Sites Exercise 6.93 introduces a study \(^{48}\) in which 2006 randomly selected US adults (age 18 or older) were asked to give the number of people in the last six months "with whom you discussed matters that are important to you." The average number of close confidants for the full sample was \(2.2 .\) In addition, the study asked participants whether or not they had a profile on a social networking site. For the 947 participants using a social networking site, the average number of close confidants was 2.5 with a standard deviation of 1.4 , and for the other 1059 participants who do not use a social networking site, the average was 1.9 with a standard deviation of \(1.3 .\) Find and interpret a \(90 \%\) confidence interval for the difference in means between the two groups.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free