Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Test \(\mathrm{A}\) is described in a journal article as being significant with " \(P<.01\) "; Test \(\mathrm{B}\) in the same article is described as being significant with " \(P<\).10." Using only this information, which test would you suspect provides stronger evidence for its alternative hypothesis?

Short Answer

Expert verified
Test A provides stronger evidence for its alternative hypothesis because it has a lower P-value than Test B.

Step by step solution

01

- Understanding the P-value

The P-value represented as 'P' in the problem statement is a measure of how much evidence we have against the null hypothesis. The lower the P-value, the more evidence we have to reject our null hypothesis and therefore more evidence in favor of the alternative hypothesis.
02

- Compare the P-values

Test A has a P-value of less than .01 and Test B has a P-value less than .10. It is clearly seen that P-value of Test A is lower.
03

- Determining the test with stronger evidence

As we have observed in step 2, Test A has a lower P-value, there is more evidence against the null hypothesis and therefore it provides stronger evidence in favor of its alternative hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We are conducting many hypothesis tests to test a claim. In every case, assume that the null hypothesis is true. Approximately how many of the tests will incorrectly find significance? 40 tests using a significance level of \(10 \%\).

Exercise 4.26 discusses a sample of households in the US. We are interested in determining whether or not there is a linear relationship between household income and number of children. (a) Define the relevant parameter(s) and state the null and alternative hypotheses. (b) Which sample correlation shows more evidence of a relationship, \(r=0.25\) or \(r=0.75 ?\) (c) Which sample correlation shows more evidence of a relationship, \(r=0.50\) or \(r=-0.50 ?\)

Exercise 4.19 on page 269 describes a study investigating the effects of exercise on cognitive function. \({ }^{31}\) Separate groups of mice were exposed to running wheels for \(0,2,4,7,\) or 10 days. Cognitive function was measured by \(Y\) maze performance. The study was testing whether exercise improves brain function, whether exercise reduces levels of BMP (a protein which makes the brain slower and less nimble), and whether exercise increases the levels of noggin (which improves the brain's ability). For each of the results quoted in parts (a), (b), and (c), interpret the information about the p-value in terms of evidence for the effect. (a) "Exercise improved Y-maze performance in most mice by the 7 th day of exposure, with further increases after 10 days for all mice tested \((p<.01)\) (b) "After only two days of running, BMP ... was reduced \(\ldots\) and it remained decreased for all subsequent time-points \((p<.01)\)." (c) "Levels of noggin ... did not change until 4 days, but had increased 1.5 -fold by \(7-10\) days of exercise \((p<.001)\)." (d) Which of the tests appears to show the strongest statistical effect? (e) What (if anything) can we conclude about the effects of exercise on mice?

We are conducting many hypothesis tests to test a claim. In every case, assume that the null hypothesis is true. Approximately how many of the tests will incorrectly find significance? 300 tests using a significance level of \(1 \%\).

Hypotheses for a statistical test are given, followed by several possible confidence intervals for different samples. In each case, use the confidence interval to state a conclusion of the test for that sample and give the significance level used. Hypotheses: \(H_{0}: p=0.5\) vs \(H_{a}: p \neq 0.5\) (a) 95\% confidence interval for \(p: \quad 0.53\) to 0.57 (b) \(95 \%\) confidence interval for \(p: \quad 0.41\) to 0.52 (c) 99\% confidence interval for \(p: \quad 0.35\) to 0.55

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free