Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Using the \(\mathrm{p}\) -value given, are the results significant at a \(10 \%\) level? At a \(5 \%\) level? At a \(1 \%\) level? \(\mathrm{p}\) -value \(=0.008\)

Short Answer

Expert verified
Yes, the results are significant at all the given levels: 10%, 5% and 1% as the p-value of 0.008 is less than all of these thresholds.

Step by step solution

01

Understand the Significance Levels

The significance levels are benchmarks that help us make decisions about the hypothesis. They are often denoted as a decimal, such as 0.10 for 10%, 0.05 for 5% and 0.01 for 1%.
02

Compare the p-value with Significance Levels

Firstly, compare the p-value \(0.008\) with the first significance level \(0.10 (or 10%)\). Since \(0.008 < 0.10\), it can be concluded that the results are significant at a 10% level.
03

Continue Comparing with Other Significance Levels

Next, compare the p-value \(0.008\) to the 5% significance level (0.05). Again, as \(0.008 < 0.05\), the results are significant at the 5% level. Finally, compare the p-value \(0.008\) with the 1% significance level (0.01). Although \(0.008 < 0.01\), the results are also significant at a 1% level.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). Testing to see whether taking a vitamin supplement each day has significant health benefits. There are no (known) harmful side effects of the supplement.

Mating Choice and Offspring Fitness: MiniExperiments Exercise 4.153 explores the question of whether mate choice improves offspring fitness in fruit flies, and describes two seemingly identical experiments yielding conflicting results (one significant, one insignificant). In fact, the second source was actually a series of three different experiments, and each full experiment was comprised of 50 different mini-experiments (runs), 10 each on five different days. (a) Suppose each of the 50 mini-experiments from the first study were analyzed individually. If mating choice has no impact on offspring fitness, about how many of these \(50 \mathrm{p}\) -values would you expect to yield significant results at \(\alpha=0.05 ?\) (b) The 50 p-values, testing the alternative \(H_{a}\) : \(p_{C}>p_{N C}\) (proportion of flies surviving is higher in the mate choice group) are given below: $$ \begin{array}{lllllllllll} \text { Day 1: } & 0.96 & 0.85 & 0.14 & 0.54 & 0.76 & 0.98 & 0.33 & 0.84 & 0.21 & 0.89 \\ \text { Day 2: } & 0.89 & 0.66 & 0.67 & 0.88 & 1.00 & 0.01 & 1.00 & 0.77 & 0.95 & 0.27 \\ \text { Day 3: } & 0.58 & 0.11 & 0.02 & 0.00 & 0.62 & 0.01 & 0.79 & 0.08 & 0.96 & 0.00 \\ \text { Day 4: } & 0.89 & 0.13 & 0.34 & 0.18 & 0.11 & 0.66 & 0.01 & 0.31 & 0.69 & 0.19 \\ \text { Day 5: } & 0.42 & 0.06 & 0.31 & 0.24 & 0.24 & 0.16 & 0.17 & 0.03 & 0.02 & 0.11 \end{array} $$ How many are actually significant using \(\alpha=0.05 ?\) (c) You may notice that two p-values (the fourth and last run on day 3 ) are 0.00 when rounded to two decimal places. The second of these is actually 0.0001 if we report more decimal places. This is very significant! Would it be appropriate and/or ethical to just report this one run, yielding highly statistically significant evidence that mate choice improves offspring fitness? Explain. (d) You may also notice that two of the p-values on day 2 are 1 (rounded to two decimal places). If we had been testing the opposite alternative, \(H_{a}:\) \(p_{C}

Figure 4.25 shows a scatterplot of the acidity (pH) for a sample of \(n=53\) Florida lakes vs the average mercury level (ppm) found in fish taken from each lake. The full dataset is introduced in Data 2.4 on page 71 and is available in FloridaLakes. There appears to be a negative trend in the scatterplot, and we wish to test whether there is significant evidence of a negative association between \(\mathrm{pH}\) and mercury levels. (a) What are the null and alternative hypotheses? (b) For these data, a statistical software package produces the following output: $$ r=-0.575 \quad p \text { -value }=0.000017 $$ Use the p-value to give the conclusion of the test. Include an assessment of the strength of the evidence and state your result in terms of rejecting or failing to reject \(H_{0}\) and in terms of \(\mathrm{pH}\) and mercury. (c) Is this convincing evidence that low \(\mathrm{pH}\) causes the average mercury level in fish to increase? Why or why not?

Euchre One of the authors and some statistician friends have an ongoing series of Euchre games that will stop when one of the two teams is deemed to be statistically significantly better than the other team. Euchre is a card game and each game results in a win for one team and a loss for the other. Only two teams are competing in this series, which we'll call team A and team B. (a) Define the parameter(s) of interest. (b) What are the null and alternative hypotheses if the goal is to determine if either team is statistically significantly better than the other at winning Euchre? (c) What sample statistic(s) would they need to measure as the games go on? (d) Could the winner be determined after one or two games? Why or why not? (e) Which significance level, \(5 \%\) or \(1 \%,\) will make the game last longer?

Indicate whether it is best assessed by using a confidence interval or a hypothesis test or whether statistical inference is not relevant to answer it. (a) What percent of US voters support instituting a national kindergarten through \(12^{\text {th }}\) grade math curriculum? (b) Do basketball players hit a higher proportion of free throws when they are playing at home than when they are playing away? (c) Do a majority of adults riding a bicycle wear a helmet? (d) On average, were the 23 players on the 2014 Canadian Olympic hockey team older than the 23 players on the 2014 US Olympic hockey team?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free