Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

State the conclusion of the test based on this p-value in terms of "Reject \(H_{0} "\) or "Do not reject \(H_{0} "\), if we use a \(5 \%\) significance level. p-value \(=0.0320\)

Short Answer

Expert verified
Reject \(H_{0}\)

Step by step solution

01

Understand the significance level

The first step is to understand what the significance level (alpha) means. In this exercise, the significance level is given as \(5 \% \) or 0.05.
02

Compare p-value to Significance Level

Once you are clear on the significance level, the next step is to compare the given p-value (\(0.0320\)) to the significance level. The rule of thumb is: if the p-value is less than or equal to the significance level, reject the null hypothesis (\(H_{0}\)). If the p-value is greater than the significance level, do not reject the null hypothesis.
03

Make the Decision

In this case, since the p-value (\(0.0320\)) is less than the significance level (0.05), the decision would be to reject the null hypothesis

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Match the four \(\mathrm{p}\) -values with the appropriate conclusion: (a) The evidence against the null hypothesis is significant, but only at the \(10 \%\) level. (b) The evidence against the null and in favor of the alternative is very strong. (c) There is not enough evidence to reject the null hypothesis, even at the \(10 \%\) level. (d) The result is significant at a \(5 \%\) level but not at a \(1 \%\) level. I. 0.00008 II. 0.0571 III. 0.0368 IV. \(\quad 0.1753\)

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). Testing to see whether taking a vitamin supplement each day has significant health benefits. There are no (known) harmful side effects of the supplement.

The same sample statistic is used to test a hypothesis, using different sample sizes. In each case, use StatKey or other technology to find the p-value and indicate whether the results are significant at a \(5 \%\) level. Which sample size provides the strongest evidence for the alternative hypothesis? Testing \(H_{0}: p=0.5\) vs \(H_{a}: p>0.5\) using \(\hat{p}=0.55\) with each of the following sample sizes: (a) \(\hat{p}=55 / 100=0.55\) (b) \(\hat{p}=275 / 500=0.55\) (c) \(\hat{p}=550 / 1000=0.55\)

A confidence interval for a sample is given, followed by several hypotheses to test using that sample. In each case, use the confidence interval to give a conclusion of the test (if possible) and also state the significance level you are using. A \(99 \%\) confidence interval for \(\mu: 134\) to 161 (a) \(H_{0}: \mu=100\) vs \(H_{a}: \mu \neq 100\) (b) \(H_{0}: \mu=150 \mathrm{vs} H_{a}: \mu \neq 150\) (c) \(H_{0}: \mu=200\) vs \(H_{a}: \mu \neq 200\)

Scientists studying lion attacks on humans in Tanzania \(^{32}\) found that 95 lion attacks happened between \(6 \mathrm{pm}\) and \(10 \mathrm{pm}\) within either five days before a full moon or five days after a full moon. Of these, 71 happened during the five days after the full moon while the other 24 happened during the five days before the full moon. Does this sample of lion attacks provide evidence that attacks are more likely after a full moon? In other words, is there evidence that attacks are not equally split between the two five-day periods? Use StatKey or other technology to find the p-value, and be sure to show all details of the test. (Note that this is a test for a single proportion since the data come from one sample.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free