Chapter 4: Problem 83
Which one provides the strongest evidence against \(\mathrm{H}_{0} ?\) p-value \(=0.02\) or \(\quad\) p-value \(=0.0008\)
Chapter 4: Problem 83
Which one provides the strongest evidence against \(\mathrm{H}_{0} ?\) p-value \(=0.02\) or \(\quad\) p-value \(=0.0008\)
All the tools & learning materials you need for study success - in one app.
Get started for freeData 4.3 on page 265 discusses a test to determine if the mean level of arsenic in chicken meat is above 80 ppb. If a restaurant chain finds significant evidence that the mean arsenic level is above \(80,\) the chain will stop using that supplier of chicken meat. The hypotheses are $$ \begin{array}{ll} H_{0}: & \mu=80 \\ H_{a}: & \mu>80 \end{array} $$ where \(\mu\) represents the mean arsenic level in all chicken meat from that supplier. Samples from two different suppliers are analyzed, and the resulting p-values are given: Sample from Supplier A: p-value is 0.0003 Sample from Supplier B: p-value is 0.3500 (a) Interpret each p-value in terms of the probability of the results happening by random chance. (b) Which p-value shows stronger evidence for the alternative hypothesis? What does this mean in terms of arsenic and chickens? (c) Which supplier, \(A\) or \(B\), should the chain get chickens from in order to avoid too high a level of arsenic?
Giving a Coke/Pepsi taste test to random people in New York City to determine if there is evidence for the claim that Pepsi is preferred.
Give null and alternative hypotheses for a population proportion, as well as sample results. Use StatKey or other technology to generate a randomization distribution and calculate a p-value. StatKey tip: Use "Test for a Single Proportion" and then "Edit Data" to enter the sample information. Hypotheses: \(H_{0}: p=0.7\) vs \(H_{a}: p<0.7\) Sample data: \(\hat{p}=125 / 200=0.625\) with \(n=200\)
Approval Rating for Congress In a Gallup poll \(^{51}\) conducted in December 2015 , a random sample of \(n=824\) American adults were asked "Do you approve or disapprove of the way Congress is handling its job?" The proportion who said they approve is \(\hat{p}=0.13,\) and a \(95 \%\) confidence interval for Congressional job approval is 0.107 to 0.153 . If we use a 5\% significance level, what is the conclusion if we are: (a) Testing to see if there is evidence that the job approval rating is different than \(14 \%\). (This happens to be the average sample approval rating from the six months prior to this poll.) (b) Testing to see if there is evidence that the job approval rating is different than \(9 \%\). (This happens to be the lowest sample Congressional approval rating Gallup ever recorded through the time of the poll.)
Could owning a cat as a child be related to mental illness later in life? Toxoplasmosis is a disease transmitted primarily through contact with cat feces, and has recently been linked with schizophrenia and other mental illnesses. Also, people infected with Toxoplasmosis tend to like cats more and are 2.5 times more likely to get in a car accident, due to delayed reaction times. The CDC estimates that about \(22.5 \%\) of Americans are infected with Toxoplasmosis (most have no symptoms), and this prevalence can be as high as \(95 \%\) in other parts of the world. A study \(^{37}\) randomly selected 262 people registered with the National Alliance for the Mentally Ill (NAMI), almost all of whom had schizophrenia, and for each person selected, chose two people from families without mental illness who were the same age, sex, and socioeconomic status as the person selected from NAMI. Each participant was asked whether or not they owned a cat as a child. The results showed that 136 of the 262 people in the mentally ill group had owned a cat, while 220 of the 522 people in the not mentally ill group had owned a cat. (a) This is known as a case-control study, where cases are selected as people with a specific disease or trait, and controls are chosen to be people without the disease or trait being studied. Both cases and controls are then asked about some variable from their past being studied as a potential risk factor. This is particularly useful for studying rare diseases (such as schizophrenia), because the design ensures a sufficient sample size of people with the disease. Can casecontrol studies such as this be used to infer a causal relationship between the hypothesized risk factor (e.g., cat ownership) and the disease (e.g., schizophrenia)? Why or why not? (b) In case-control studies, controls are usually chosen to be similar to the cases. For example, in this study each control was chosen to be the same age, sex, and socioeconomic status as the corresponding case. Why choose controls who are similar to the cases? (c) For this study, calculate the relevant difference in proportions; proportion of cases (those with schizophrenia) who owned a cat as a child minus proportion of controls (no mental illness) who owned a cat as a child. (d) For testing the hypothesis that the proportion of cat owners is higher in the schizophrenic group than the control group, use technology to generate a randomization distribution and calculate the p-value. (e) Do you think this provides evidence that there is an association between owning a cat as a child and developing schizophrenia? \(^{38}\) Why or why not?
What do you think about this solution?
We value your feedback to improve our textbook solutions.