Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 4.50 and 4.51 , a randomization distribution is given for a hypothesis test, and shows what values of the sample statistic are likely to occur if the null hypothesis is true. Several possible values are given for a sample statistic. In each case, indicate whether seeing a sample statistic as extreme as the value given is (i) reasonably likely to occur when the null hypothesis is true, (ii) unusual but might occur occasionally when the null hypothesis is true, or (iii) extremely unlikely to ever occur when the null hvpothesis is true. Figure 4.13 (a) shows a randomization distribution for a hypothesis test with \(H_{0}: p=0.30\). Answer the question for these possible sample proportions: (a) \(\hat{p}=0.1\) (b) \(\hat{p}=0.35\) (c) \(\hat{p}=0.6\)

Short Answer

Expert verified
(a) \(\hat{p}=0.1\) is (iii) extremely unlikely to ever occur when the null hypothesis is true. (b) \(\hat{p}=0.35\) is (ii) unusual but might occur occasionally when the null hypothesis is true. (c) \(\hat{p}=0.6\) is (iii) extremely unlikely to ever occur when the null hypothesis is true.

Step by step solution

01

Understanding the Hypothesis

The null hypothesis \(H_{0}: p=0.30\), proposes that the population proportion \(p\) equals 0.30.
02

Comparing \(\hat{p}=0.1\) with the Null Hypothesis

\(p=0.1\) is quite a distance from the null value of \(p=0.30\). Hence, getting a sample proportion as extreme as \(\hat{p}=0.1\) is not reasonably likely to occur when the null hypothesis is true. We can categorize the probability of occurrence as (iii) extremely unlikely to ever occur when the null hypothesis is true.
03

Comparing \(\hat{p}=0.35\) with the Null Hypothesis

Comparing \(p=0.35\) with the null hypothesis, it is closer but still not identical. Thus, it's unusual but might occur occasionally when the null hypothesis is true. We can categorize it as (ii) unusual but might occur occasionally when the null hypothesis is true.
04

Comparing \(\hat{p}=0.6\) with the Null Hypothesis

\(p=0.6\) is very far from the null hypothesis. This is not at all likely considering our null hypothesis. So, it is (iii) extremely unlikely to ever occur when the null hypothesis is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Eating Breakfast Cereal and Conceiving Boys Newscientist.com ran the headline "Breakfast Cereals Boost Chances of Conceiving Boys," based on an article which found that women who eat breakfast cereal before becoming pregnant are significantly more likely to conceive boys. \({ }^{42}\) The study used a significance level of \(\alpha=0.01\). The researchers kept track of 133 foods and, for each food, tested whether there was a difference in the proportion conceiving boys between women who ate the food and women who didn't. Of all the foods, only breakfast cereal showed a significant difference. (a) If none of the 133 foods actually have an effect on the gender of a conceived child, how many (if any) of the individual tests would you expect to show a significant result just by random chance? Explain. (Hint: Pay attention to the significance level.) (b) Do you think the researchers made a Type I error? Why or why not? (c) Even if you could somehow ascertain that the researchers did not make a Type I error, that is, women who eat breakfast cereals are actually more likely to give birth to boys, should you believe the headline "Breakfast Cereals Boost Chances of Conceiving Boys"? Why or why not?

Utilizing the census of a community, which includes information about all residents of the community, to determine if there is evidence for the claim that the percentage of people in the community living in a mobile home is greater than \(10 \%\).

Polling 1000 people in a large community to determine if there is evidence for the claim that the percentage of people in the community living in a mobile home is greater then \(10 \%\).

In this exercise, we see that it is possible to use counts instead of proportions in testing a categorical variable. Data 4.7 describes an experiment to investigate the effectiveness of the two drugs desipramine and lithium in the treatment of cocaine addiction. The results of the study are summarized in Table 4.14 on page \(323 .\) The comparison of lithium to the placebo is the subject of Example 4.34 . In this exercise, we test the success of desipramine against a placebo using a different statistic than that used in Example 4.34. Let \(p_{d}\) and \(p_{c}\) be the proportion of patients who relapse in the desipramine group and the control group, respectively. We are testing whether desipramine has a lower relapse rate then a placebo. (a) What are the null and alternative hypotheses? (b) From Table 4.14 we see that 20 of the 24 placebo patients relapsed, while 10 of the 24 desipramine patients relapsed. The observed difference in relapses for our sample is $$\begin{aligned}D &=\text { desipramine relapses }-\text { placebo relapses } \\\&=10-20=-10\end{aligned}$$ If we use this difference in number of relapses as our sample statistic, where will the randomization distribution be centered? Why? (c) If the null hypothesis is true (and desipramine has no effect beyond a placebo), we imagine that the 48 patients have the same relapse behavior regardless of which group they are in. We create the randomization distribution by simulating lots of random assignments of patients to the two groups and computing the difference in number of desipramine minus placebo relapses for each assignment. Describe how you could use index cards to create one simulated sample. How many cards do you need? What will you put on them? What will you do with them?

The same sample statistic is used to test a hypothesis, using different sample sizes. In each case, use StatKey or other technology to find the p-value and indicate whether the results are significant at a \(5 \%\) level. Which sample size provides the strongest evidence for the alternative hypothesis? Testing \(H_{0}: p=0.5\) vs \(H_{a}: p>0.5\) using \(\hat{p}=0.55\) with each of the following sample sizes: (a) \(\hat{p}=55 / 100=0.55\) (b) \(\hat{p}=275 / 500=0.55\) (c) \(\hat{p}=550 / 1000=0.55\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free