Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

State the null and alternative hypotheses for the statistical test described. Testing to see if there is evidence that the mean of group \(\mathrm{A}\) is not the same as the mean of group \(\mathrm{B}\).

Short Answer

Expert verified
The null hypothesis (\(H_0\)) is: \(\mu_A = \mu_B\) and the alternative hypothesis (\(H_1\) or \(H_a\)) is: \(\mu_A \neq \mu_B\).

Step by step solution

01

Formulate the Null Hypothesis

The null hypothesis asserts that there's no significant difference in the means of the two groups. Therefore, the null hypothesis (\(H_0\)) can be stated as: The mean of group A equals the mean of group B or, more formally, \(\mu_A = \mu_B\) where \(\mu_A\) and \(\mu_B\) are the respective means of the two groups.
02

Formulate the Alternative Hypothesis

The alternative hypothesis, on the other hand, is what we're trying to discover evidence for. That is, the means of the two groups are not the same. This means the alternative hypothesis (\(H_1\) or \(H_a\)) can be stated as: The mean of group A does not equal the mean of group B or, in other terms, \(\mu_A \neq \mu_B\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A study \(^{54}\) shows that relationship status on Facebook matters to couples. The study included 58 college-age heterosexual couples who had been in a relationship for an average of 19 months. In 45 of the 58 couples, both partners reported being in a relationship on Facebook. In 31 of the 58 couples, both partners showed their dating partner in their Facebook profile picture. Men were somewhat more likely to include their partner in the picture than vice versa. However, the study states: "Females' indication that they are in a relationship was not as important to their male partners compared with how females felt about male partners indicating they are in a relationship." Using a population of college-age heterosexual couples who have been in a relationship for an average of 19 months: (a) A \(95 \%\) confidence interval for the proportion with both partners reporting being in a relationshipon Facebook is about 0.66 to 0.88 . What is the conclusion in a hypothesis test to see if the proportion is different from \(0.5 ?\) What significance level is being used? (b) A \(95 \%\) confidence interval for the proportion with both partners showing their dating partner in their Facebook profile picture is about 0.40 to \(0.66 .\) What is the conclusion in a hypothesis test to see if the proportion is different from \(0.5 ?\) What significance level is being used?

Exercise 4.113 refers to a survey used to assess the ignorance of the public to global population trends. A similar survey was conducted in the United Kingdom, where respondents were asked if they had a university degree. One question asked, "In the last 20 years the proportion of the world population living in extreme poverty has \(\ldots, "\) and three choices 2) "remained more or were provided: 1\()^{\text {6i }}\) increased" less the same," and 3) "decreased." Of 373 university degree holders, 45 responded with the correct answer: decreased; of 639 non-degree respondents, 57 responded with the correct answer. \({ }^{35}\) We would like to test if the percent of correct answers is significantly different between degree holders and non- degree holders. (a) What are the null and alternative hypotheses? (b) Using StatKey or other technology, construct a randomization distribution and compute the p-value. (c) State the conclusion in context.

It is believed that sunlight offers some protection against multiple sclerosis (MS) since the disease is rare near the equator and more prevalent at high latitudes. What is it about sunlight that offers this protection? To find out, researchers \({ }^{23}\) injected mice with proteins that induce a condition in mice comparable to MS in humans. The control mice got only the injection, while a second group of mice were exposed to UV light before and after the injection, and a third group of mice received vitamin D supplements before and after the injection. In the test comparing UV light to the control group, evidence was found that the mice exposed to UV suppressed the MS-like disease significantly better than the control mice. In the test comparing mice getting vitamin D supplements to the control group, the mice given the vitamin D did not fare significantly better than the control group. If the p-values for the two tests are 0.472 and 0.002 , which p-value goes with which test?

Hypotheses for a statistical test are given, followed by several possible confidence intervals for different samples. In each case, use the confidence interval to state a conclusion of the test for that sample and give the significance level used. Hypotheses: \(H_{0}: \mu=15\) vs \(H_{a}: \mu \neq 15\) (a) \(95 \%\) confidence interval for \(\mu: \quad 13.9\) to 16.2 (b) \(95 \%\) confidence interval for \(\mu: \quad 12.7\) to 14.8 (c) \(90 \%\) confidence interval for \(\mu: \quad 13.5\) to 16.5

Exercise 4.19 on page 269 describes a study investigating the effects of exercise on cognitive function. \({ }^{31}\) Separate groups of mice were exposed to running wheels for \(0,2,4,7,\) or 10 days. Cognitive function was measured by \(Y\) maze performance. The study was testing whether exercise improves brain function, whether exercise reduces levels of BMP (a protein which makes the brain slower and less nimble), and whether exercise increases the levels of noggin (which improves the brain's ability). For each of the results quoted in parts (a), (b), and (c), interpret the information about the p-value in terms of evidence for the effect. (a) "Exercise improved Y-maze performance in most mice by the 7 th day of exposure, with further increases after 10 days for all mice tested \((p<.01)\) (b) "After only two days of running, BMP ... was reduced \(\ldots\) and it remained decreased for all subsequent time-points \((p<.01)\)." (c) "Levels of noggin ... did not change until 4 days, but had increased 1.5 -fold by \(7-10\) days of exercise \((p<.001)\)." (d) Which of the tests appears to show the strongest statistical effect? (e) What (if anything) can we conclude about the effects of exercise on mice?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free