Chapter 4: Problem 32
Polling 1000 people in a large community to determine if there is evidence for the claim that the percentage of people in the community living in a mobile home is greater then \(10 \%\).
Chapter 4: Problem 32
Polling 1000 people in a large community to determine if there is evidence for the claim that the percentage of people in the community living in a mobile home is greater then \(10 \%\).
All the tools & learning materials you need for study success - in one app.
Get started for freeInterpreting a P-value In each case, indicate whether the statement is a proper interpretation of what a p-value measures. (a) The probability the null hypothesis \(H_{0}\) is true. (b) The probability that the alternative hypothesis \(H_{a}\) is true. (c) The probability of seeing data as extreme as the sample, when the null hypothesis \(H_{0}\) is true. (d) The probability of making a Type I error if the null hypothesis \(H_{0}\) is true. (e) The probability of making a Type II error if the alternative hypothesis \(H_{a}\) is true.
A statistics instructor would like to ask "clicker" questions that about \(80 \%\) of her students in a large lecture class will get correct. A higher proportion would be too easy and a lower proportion might discourage students. Suppose that she tries a sample of questions and receives 76 correct answers and 24 incorrect answers among 100 responses. The hypotheses of interest are \(H_{0}: p=0.80\) vs \(H_{a}: p \neq 0.80 .\) Discuss whether or not the methods described below would be appropriate ways to generate randomization samples in this setting. Explain your reasoning in each case. (a) Sample 100 answers (with replacement) from the original student responses. Count the number of correct responses. (b) Sample 100 answers (with replacement) from a set consisting of 8 correct responses and 2 incorrect responses. Count the number of correct mses.
Test \(\mathrm{A}\) is described in a journal article as being significant with " \(P<.01\) "; Test \(\mathrm{B}\) in the same article is described as being significant with " \(P<\).10." Using only this information, which test would you suspect provides stronger evidence for its alternative hypothesis?
Give null and alternative hypotheses for a population proportion, as well as sample results. Use StatKey or other technology to generate a randomization distribution and calculate a p-value. StatKey tip: Use "Test for a Single Proportion" and then "Edit Data" to enter the sample information. Hypotheses: \(H_{0}: p=0.6\) vs \(H_{a}: p>0.6\) Sample data: \(\hat{p}=52 / 80=0.65\) with \(n=80\)
Exercise 4.26 discusses a sample of households in the US. We are interested in determining whether or not there is a linear relationship between household income and number of children. (a) Define the relevant parameter(s) and state the null and alternative hypotheses. (b) Which sample correlation shows more evidence of a relationship, \(r=0.25\) or \(r=0.75 ?\) (c) Which sample correlation shows more evidence of a relationship, \(r=0.50\) or \(r=-0.50 ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.