Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Studies have shown that omega-3 fatty acids have a wide variety of health benefits. Omega- 3 oils can be found in foods such as fish, walnuts, and flaxseed. A company selling milled flaxseed advertises that one tablespoon of the product contains, on average, at least \(3800 \mathrm{mg}\) of ALNA, the primary omega-3. (a) The company plans to conduct a test to ensure that there is sufficient evidence that its claim is correct. To be safe, the company wants to make sure that evidence shows the average is higher than \(3800 \mathrm{mg} .\) What are the null and alternative hypotheses? (b) Suppose, instead, that a consumer organization plans to conduct a test to see if there is evidence against the claim that the product contains an average of \(3800 \mathrm{mg}\) per tablespoon. The consumer organization will only take action if it finds evidence that the claim made by the company is false and that the actual average amount of omega- 3 is less than \(3800 \mathrm{mg}\). What are the null and alternative hypotheses?

Short Answer

Expert verified
For the company, null hypothesis, H0: µ = 3800mg and alternative hypothesis, H1: µ > 3800mg. For the consumer organization, null hypothesis, H0: µ = 3800mg and alternative hypothesis, H1: µ < 3800mg.

Step by step solution

01

Establishing Null and Alternative Hypothesis from Company's Perspective

From the perspective of the company, the null hypothesis (H0) would be that the average quantity of omega-3 fatty acids in a tablespoon of milled flaxseed is equal to 3800 mg. The alternative hypothesis (H1) would be that the average quantity of omega-3 fatty acids in a tablespoon of milled flaxseed is greater than 3800 mg. So, H0: µ = 3800mg and H1: µ > 3800mg. Here, µ refers to the average quantity of omega-3 acid.
02

Establishing Null and Alternative Hypothesis from Consumer Organization's Perspective

If a consumer organization is considering this case, the null hypothesis (H0) would still be that the average quantity of omega-3 fatty acids in a tablespoon of milled flaxseed equals 3800mg – this is because null hypotheses always involve a statement of equality. However, the alternative hypothesis (H1) would be that the average quantity of omega-3 fatty acids in a tablespoon of milled flaxseed is less than 3800mg. As such, from the consumer organization's perspective, null hypothesis, H0: µ = 3800mg and alternative hypothesis H1: µ < 3800mg.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). Testing to see whether taking a vitamin supplement each day has significant health benefits. There are no (known) harmful side effects of the supplement.

A study \(^{54}\) shows that relationship status on Facebook matters to couples. The study included 58 college-age heterosexual couples who had been in a relationship for an average of 19 months. In 45 of the 58 couples, both partners reported being in a relationship on Facebook. In 31 of the 58 couples, both partners showed their dating partner in their Facebook profile picture. Men were somewhat more likely to include their partner in the picture than vice versa. However, the study states: "Females' indication that they are in a relationship was not as important to their male partners compared with how females felt about male partners indicating they are in a relationship." Using a population of college-age heterosexual couples who have been in a relationship for an average of 19 months: (a) A \(95 \%\) confidence interval for the proportion with both partners reporting being in a relationshipon Facebook is about 0.66 to 0.88 . What is the conclusion in a hypothesis test to see if the proportion is different from \(0.5 ?\) What significance level is being used? (b) A \(95 \%\) confidence interval for the proportion with both partners showing their dating partner in their Facebook profile picture is about 0.40 to \(0.66 .\) What is the conclusion in a hypothesis test to see if the proportion is different from \(0.5 ?\) What significance level is being used?

Polling 1000 people in a large community to determine if there is evidence for the claim that the percentage of people in the community living in a mobile home is greater then \(10 \%\).

Weight Loss Program Suppose that a weight loss company advertises that people using its program lose an average of 8 pounds the first month, and that the Federal Trade Commission (the main government agency responsible for truth in advertising) is gathering evidence to see if this advertising claim is accurate. If the FTC finds evidence that the average is less than 8 pounds, the agency will file a lawsuit against the company for false advertising. (a) What are the null and alternative hypotheses the FTC should use? (b) Suppose that the FTC gathers information from a very large random sample of patrons and finds that the average weight loss during the first month in the program is \(\bar{x}=7.9\) pounds with a p-value for this result of \(0.006 .\) What is the conclusion of the test? Are the results statistically significant? (c) Do you think the results of the test are practically significant? In other words, do you think patrons of the weight loss program will care that the average is 7.9 pounds lost rather than 8.0 pounds lost? Discuss the difference between practical significance and statistical significance in this context.

In this exercise, we see that it is possible to use counts instead of proportions in testing a categorical variable. Data 4.7 describes an experiment to investigate the effectiveness of the two drugs desipramine and lithium in the treatment of cocaine addiction. The results of the study are summarized in Table 4.14 on page \(323 .\) The comparison of lithium to the placebo is the subject of Example 4.34 . In this exercise, we test the success of desipramine against a placebo using a different statistic than that used in Example 4.34. Let \(p_{d}\) and \(p_{c}\) be the proportion of patients who relapse in the desipramine group and the control group, respectively. We are testing whether desipramine has a lower relapse rate then a placebo. (a) What are the null and alternative hypotheses? (b) From Table 4.14 we see that 20 of the 24 placebo patients relapsed, while 10 of the 24 desipramine patients relapsed. The observed difference in relapses for our sample is $$\begin{aligned}D &=\text { desipramine relapses }-\text { placebo relapses } \\\&=10-20=-10\end{aligned}$$ If we use this difference in number of relapses as our sample statistic, where will the randomization distribution be centered? Why? (c) If the null hypothesis is true (and desipramine has no effect beyond a placebo), we imagine that the 48 patients have the same relapse behavior regardless of which group they are in. We create the randomization distribution by simulating lots of random assignments of patients to the two groups and computing the difference in number of desipramine minus placebo relapses for each assignment. Describe how you could use index cards to create one simulated sample. How many cards do you need? What will you put on them? What will you do with them?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free