Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A statistics instructor would like to ask "clicker" questions that about \(80 \%\) of her students in a large lecture class will get correct. A higher proportion would be too easy and a lower proportion might discourage students. Suppose that she tries a sample of questions and receives 76 correct answers and 24 incorrect answers among 100 responses. The hypotheses of interest are \(H_{0}: p=0.80\) vs \(H_{a}: p \neq 0.80 .\) Discuss whether or not the methods described below would be appropriate ways to generate randomization samples in this setting. Explain your reasoning in each case. (a) Sample 100 answers (with replacement) from the original student responses. Count the number of correct responses. (b) Sample 100 answers (with replacement) from a set consisting of 8 correct responses and 2 incorrect responses. Count the number of correct mses.

Short Answer

Expert verified
Method a would not be appropriate for hypothesis testing as it does not reflect the proportions of the null hypothesis. However, method b would be appropriate as it simulates the proportions of the null hypothesis.

Step by step solution

01

Understanding method a

In method a, we sample 100 answers (with replacement) from the original student responses and count the number of correct responses. This would reflect the true proportions in the observed data, namely, that 76% of responses were correct and 24% were incorrect. However, this does not match the null hypothesis that 80% of students answer correctly. Therefore, this method would not generate an appropriate randomization sample under the null hypothesis.
02

Understanding method b

In method b, we sample 100 answers (with replacement) from a set consisting of 8 correct responses and 2 incorrect responses. This method would indeed simulate results under the null hypothesis that 80% of responses are correct. Therefore, method b is an appropriate way to generate a randomization sample for testing this hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

By some accounts, the first formal hypothesis test to use statistics involved the claim of a lady tasting tea. \({ }^{11}\) In the 1920 's Muriel Bristol- Roach, a British biological scientist, was at a tea party where she claimed to be able to tell whether milk was poured into a cup before or after the tea. R.A. Fisher, an eminent statistician, was also attending the party. As a natural skeptic, Fisher assumed that Muriel had no ability to distinguish whether the milk or tea was poured first, and decided to test her claim. An experiment was designed in which Muriel would be presented with some cups of tea with the milk poured first, and some cups with the tea poured first. (a) In plain English (no symbols), describe the null and alternative hypotheses for this scenario. (b) Let \(p\) be the true proportion of times Muriel can guess correctly. State the null and alternative hypothesis in terms of \(p\).

Eating Breakfast Cereal and Conceiving Boys Newscientist.com ran the headline "Breakfast Cereals Boost Chances of Conceiving Boys," based on an article which found that women who eat breakfast cereal before becoming pregnant are significantly more likely to conceive boys. \({ }^{42}\) The study used a significance level of \(\alpha=0.01\). The researchers kept track of 133 foods and, for each food, tested whether there was a difference in the proportion conceiving boys between women who ate the food and women who didn't. Of all the foods, only breakfast cereal showed a significant difference. (a) If none of the 133 foods actually have an effect on the gender of a conceived child, how many (if any) of the individual tests would you expect to show a significant result just by random chance? Explain. (Hint: Pay attention to the significance level.) (b) Do you think the researchers made a Type I error? Why or why not? (c) Even if you could somehow ascertain that the researchers did not make a Type I error, that is, women who eat breakfast cereals are actually more likely to give birth to boys, should you believe the headline "Breakfast Cereals Boost Chances of Conceiving Boys"? Why or why not?

An article noted that it may be possible to accurately predict which way a penalty-shot kicker in soccer will direct his shot. \({ }^{27}\) The study finds that certain types of body language by a soccer player \(-\) called "tells"-can be accurately read to predict whether the ball will go left or right. For a given body movement leading up to the kick, the question is whether there is strong evidence that the proportion of kicks that go right is significantly different from one-half. (a) What are the null and alternative hypotheses in this situation? (b) If sample results for one type of body movement give a p-value of 0.3184 , what is the conclusion of the test? Should a goalie learn to distinguish this movement? (c) If sample results for a different type of body movement give a p-value of \(0.0006,\) what is the conclusion of the test? Should a goalie learn to distinguish this movement?

Euchre One of the authors and some statistician friends have an ongoing series of Euchre games that will stop when one of the two teams is deemed to be statistically significantly better than the other team. Euchre is a card game and each game results in a win for one team and a loss for the other. Only two teams are competing in this series, which we'll call team A and team B. (a) Define the parameter(s) of interest. (b) What are the null and alternative hypotheses if the goal is to determine if either team is statistically significantly better than the other at winning Euchre? (c) What sample statistic(s) would they need to measure as the games go on? (d) Could the winner be determined after one or two games? Why or why not? (e) Which significance level, \(5 \%\) or \(1 \%,\) will make the game last longer?

Figure 4.25 shows a scatterplot of the acidity (pH) for a sample of \(n=53\) Florida lakes vs the average mercury level (ppm) found in fish taken from each lake. The full dataset is introduced in Data 2.4 on page 71 and is available in FloridaLakes. There appears to be a negative trend in the scatterplot, and we wish to test whether there is significant evidence of a negative association between \(\mathrm{pH}\) and mercury levels. (a) What are the null and alternative hypotheses? (b) For these data, a statistical software package produces the following output: $$ r=-0.575 \quad p \text { -value }=0.000017 $$ Use the p-value to give the conclusion of the test. Include an assessment of the strength of the evidence and state your result in terms of rejecting or failing to reject \(H_{0}\) and in terms of \(\mathrm{pH}\) and mercury. (c) Is this convincing evidence that low \(\mathrm{pH}\) causes the average mercury level in fish to increase? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free