Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Do you think that students undergo physiological changes when in potentially stressful situations such as taking a quiz or exam? A sample of statistics students were interrupted in the middle of a quiz and asked to record their pulse rates (beats for a 1-minute period). Ten of the students had also measured their pulse rate while sitting in class listening to a lecture, and these values were matched with their quiz pulse rates. The data appear in Table 4.18 and are stored in QuizPulse10. Note that this is paired data since we have two values, a quiz and a lecture pulse rate, for each student in the sample. The question of interest is whether quiz pulse rates tend to be higher, on average, than lecture pulse rates. (Hint: Since this is paired data, we work with the differences in pulse rate for each student between quiz and lecture. If the differences are \(D=\) quiz pulse rate minus lecture pulse rate, the question of interest is whether \(\mu_{D}\) is greater than zero.) Table 4.18 Quiz and Lecture pulse rates for I0 students $$\begin{array}{lcccccccccc} \text { Student } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline \text { Quiz } & 75 & 52 & 52 & 80 & 56 & 90 & 76 & 71 & 70 & 66 \\\ \text { Lecture } & 73 & 53 & 47 & 88 & 55 & 70 & 61 & 75 & 61 & 78 \\\\\hline\end{array}$$ (a) Define the parameter(s) of interest and state the null and alternative hypotheses. (b) Determine an appropriate statistic to measure and compute its value for the original sample. (c) Describe a method to generate randomization samples that is consistent with the null hypothesis and reflects the paired nature of the data. There are several viable methods. You might use shuffled index cards, a coin, or some other randomization procedure. (d) Carry out your procedure to generate one randomization sample and compute the statistic you chose in part (b) for this sample. (e) Is the statistic for your randomization sample more extreme (in the direction of the alternative) than the original sample?

Short Answer

Expert verified
The parameters are the mean differences in pulse rates. The null hypothesis is that there is no difference in pulse rates, and the alternative hypothesis is that the quiz pulse rates are higher. The statistic is the mean of the differences, and one way to generate random samples is to shuffle the differences. Compare the test statistic from the original and randomized data to determine whether the original data provides evidence for the alternative hypothesis.

Step by step solution

01

Define Parameters

In this context, the parameter of interest is \(\mu_{D}\), which represents the mean difference in pulse rate for each student between taking a quiz and sitting in lecture.
02

State the Null and Alternative Hypotheses

Null hypothesis (\(H_{0}\)): \(\mu_{D} = 0\). This means there is no difference, on average, between students’ quiz and lecture pulse rates. \n\nAlternative hypothesis (\(H_{1}\)): \(\mu_{D} > 0\). This implies that the average pulse rate during a quiz is higher than during a lecture.
03

Determine the Appropriate Statistic

The appropriate test statistic would be the mean value of \(D =\) quiz rate - lecture rate for each student. This is computed by finding the difference between the two rates for each student, adding up these differences, and dividing by the number of students.
04

Generate Randomization Sample

To generate randomization samples that reflect the paired nature of the data, one could shuffle the differences between the two rates for each student, then assign one difference to each student randomly. Then, these shuffled differences would be used to compute the test statistic.
05

Compare the Test Statistic Value of the Original and Randomized Samples

After computing the test statistic for one randomization sample in accordance with the chosen method in Step 4, we compare its value to the test statistic calculated for the original sample. If the test statistic from the random sample is more extreme (i.e., farther from zero in the direction of the higher pulse rate during the quiz), it would provide evidence in favor of the alternative hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Data 4.3 on page 265 discusses a test to determine if the mean level of arsenic in chicken meat is above 80 ppb. If a restaurant chain finds significant evidence that the mean arsenic level is above \(80,\) the chain will stop using that supplier of chicken meat. The hypotheses are $$ \begin{array}{ll} H_{0}: & \mu=80 \\ H_{a}: & \mu>80 \end{array} $$ where \(\mu\) represents the mean arsenic level in all chicken meat from that supplier. Samples from two different suppliers are analyzed, and the resulting p-values are given: Sample from Supplier A: p-value is 0.0003 Sample from Supplier B: p-value is 0.3500 (a) Interpret each p-value in terms of the probability of the results happening by random chance. (b) Which p-value shows stronger evidence for the alternative hypothesis? What does this mean in terms of arsenic and chickens? (c) Which supplier, \(A\) or \(B\), should the chain get chickens from in order to avoid too high a level of arsenic?

A study \(^{54}\) shows that relationship status on Facebook matters to couples. The study included 58 college-age heterosexual couples who had been in a relationship for an average of 19 months. In 45 of the 58 couples, both partners reported being in a relationship on Facebook. In 31 of the 58 couples, both partners showed their dating partner in their Facebook profile picture. Men were somewhat more likely to include their partner in the picture than vice versa. However, the study states: "Females' indication that they are in a relationship was not as important to their male partners compared with how females felt about male partners indicating they are in a relationship." Using a population of college-age heterosexual couples who have been in a relationship for an average of 19 months: (a) A \(95 \%\) confidence interval for the proportion with both partners reporting being in a relationshipon Facebook is about 0.66 to 0.88 . What is the conclusion in a hypothesis test to see if the proportion is different from \(0.5 ?\) What significance level is being used? (b) A \(95 \%\) confidence interval for the proportion with both partners showing their dating partner in their Facebook profile picture is about 0.40 to \(0.66 .\) What is the conclusion in a hypothesis test to see if the proportion is different from \(0.5 ?\) What significance level is being used?

Significant and Insignificant Results (a) If we are conducting a statistical test and determine that our sample shows significant results, there are two possible realities: We are right in our conclusion or we are wrong. In each case, describe the situation in terms of hypotheses and/or errors. (b) If we are conducting a statistical test and determine that our sample shows insignificant results, there are two possible realities: We are right in our conclusion or we are wrong. In each case, describe the situation in terms of hypotheses and/or errors. (c) Explain why we generally won't ever know which of the realities (in either case) is correct.

Interpreting a P-value In each case, indicate whether the statement is a proper interpretation of what a p-value measures. (a) The probability the null hypothesis \(H_{0}\) is true. (b) The probability that the alternative hypothesis \(H_{a}\) is true. (c) The probability of seeing data as extreme as the sample, when the null hypothesis \(H_{0}\) is true. (d) The probability of making a Type I error if the null hypothesis \(H_{0}\) is true. (e) The probability of making a Type II error if the alternative hypothesis \(H_{a}\) is true.

Do You Own a Smartphone? A study \(^{19}\) conducted in July 2015 examines smartphone ownership by US adults. A random sample of 2001 people were surveyed, and the study shows that 688 of the 989 men own a smartphone and 671 of the 1012 women own a smartphone. We want to test whether the survey results provide evidence of a difference in the proportion owning a smartphone between men and women. (a) State the null and alternative hypotheses, and define the parameters. (b) Give the notation and value of the sample statistic. In the sample, which group has higher smartphone ownership: men or women? (c) Use StatKey or other technology to find the pvalue.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free