Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Approval Rating for Congress In a Gallup poll \(^{51}\) conducted in December 2015 , a random sample of \(n=824\) American adults were asked "Do you approve or disapprove of the way Congress is handling its job?" The proportion who said they approve is \(\hat{p}=0.13,\) and a \(95 \%\) confidence interval for Congressional job approval is 0.107 to 0.153 . If we use a 5\% significance level, what is the conclusion if we are: (a) Testing to see if there is evidence that the job approval rating is different than \(14 \%\). (This happens to be the average sample approval rating from the six months prior to this poll.) (b) Testing to see if there is evidence that the job approval rating is different than \(9 \%\). (This happens to be the lowest sample Congressional approval rating Gallup ever recorded through the time of the poll.)

Short Answer

Expert verified
(a) There is not enough evidence to conclude that the approval rating is different than 14%. (b) There is enough evidence to conclude that the approval rating is different than 9%.

Step by step solution

01

State the Null and Alternative Hypotheses

(a) Here we are testing to see if there is evidence that the job approval rating is different than 14%. Thus, the null hypothesis (\(H_0\)) is that the approval rating (\(p\)) equals 14%, \(H_0: p = 0.14\), and the alternative hypothesis (\(H_a\)) is that the approval rating (\(p\)) is different from 14%, \(H_a: p \neq 0.14\).\n\n(b) Similarly, here we are testing if the approval rating is different than 9%. So, the null hypothesis (\(H_0\)) is that the approval rating equals 9%, \(H_0: p = 0.09\), and the alternative hypothesis is that the approval rating is different than 9%, \(H_a: p \neq 0.09\).
02

Interpret the Confidence Interval

A 95% confidence interval for approval is from 0.107 to 0.153. This tells us that based on this sample, we are 95% confident that the true approval rating lies within this interval.
03

Conclusions of the Tests

(a) Because 14% is within our confidence interval (0.107 to 0.153), we do not reject the null hypothesis and conclude that there is not enough evidence to say that the approval rating is different than 14%.\n\n(b) Because 9% is not within our confidence interval (0.107 to 0.153), we reject the null hypothesis and conclude that there is enough evidence to say that the approval rating is different than 9%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A study suggests that exposure to UV rays through the car window may increase the risk of skin cancer. \(^{52}\) The study reviewed the records of all 1,050 skin cancer patients referred to the St. Louis University Cancer Center in 2004\. Of the 42 patients with melanoma, the cancer occurred on the left side of the body in 31 patients and on the right side in the other 11 . (a) Is this an experiment or an observational study? (b) Of the patients with melanoma, what proportion had the cancer on the left side? (c) A bootstrap \(95 \%\) confidence interval for the proportion of melanomas occurring on the left is 0.579 to \(0.861 .\) Clearly interpret the confidence interval in the context of the problem. (d) Suppose the question of interest is whether melanomas are more likely to occur on the left side than on the right. State the null and alternative hypotheses. (e) Is this a one-tailed or two-tailed test? (f) Use the confidence interval given in part (c) to predict the results of the hypothesis test in part (d). Explain your reasoning. (g) A randomization distribution gives the p-value as 0.003 for testing the hypotheses given in part (d). What is the conclusion of the test in the context of this study? (h) The authors hypothesize that skin cancers are more prevalent on the left because of the sunlight coming in through car windows. (Windows protect against UVB rays but not UVA rays.) Do the data in this study support a conclusion that more melanomas occur on the left side because of increased exposure to sunlight on that side for drivers?

By some accounts, the first formal hypothesis test to use statistics involved the claim of a lady tasting tea. \({ }^{11}\) In the 1920 's Muriel Bristol- Roach, a British biological scientist, was at a tea party where she claimed to be able to tell whether milk was poured into a cup before or after the tea. R.A. Fisher, an eminent statistician, was also attending the party. As a natural skeptic, Fisher assumed that Muriel had no ability to distinguish whether the milk or tea was poured first, and decided to test her claim. An experiment was designed in which Muriel would be presented with some cups of tea with the milk poured first, and some cups with the tea poured first. (a) In plain English (no symbols), describe the null and alternative hypotheses for this scenario. (b) Let \(p\) be the true proportion of times Muriel can guess correctly. State the null and alternative hypothesis in terms of \(p\).

Hypotheses for a statistical test are given, followed by several possible confidence intervals for different samples. In each case, use the confidence interval to state a conclusion of the test for that sample and give the significance level used. Hypotheses: \(H_{0}: p=0.5\) vs \(H_{a}: p \neq 0.5\) (a) 95\% confidence interval for \(p: \quad 0.53\) to 0.57 (b) \(95 \%\) confidence interval for \(p: \quad 0.41\) to 0.52 (c) 99\% confidence interval for \(p: \quad 0.35\) to 0.55

Does consuming beer attract mosquitoes? Exercise 4.17 on page 268 discusses an experiment done in Africa testing possible ways to reduce the spread of malaria by mosquitoes. In the experiment, 43 volunteers were randomly assigned to consume either a liter of beer or a liter of water, and the attractiveness to mosquitoes of each volunteer was measured. The experiment was designed to test whether beer consumption increases mosquito attraction. The report \(^{30}\) states that "Beer consumption, as opposed to water consumption, significantly increased the activation \(\ldots\) of \(A n\). gambiae [mosquitoes] ... \((P<0.001)\)." (a) Is this convincing evidence that consuming beer is associated with higher mosquito attraction? Why or why not? (b) How strong is the evidence for the result? Explain. (c) Based on these results, it is reasonable to conclude that consuming beer causes an increase in mosquito attraction? Why or why not?

Hypotheses for a statistical test are given, followed by several possible confidence intervals for different samples. In each case, use the confidence interval to state a conclusion of the test for that sample and give the significance level used. Hypotheses: \(H_{0}: \mu=15\) vs \(H_{a}: \mu \neq 15\) (a) \(95 \%\) confidence interval for \(\mu: \quad 13.9\) to 16.2 (b) \(95 \%\) confidence interval for \(\mu: \quad 12.7\) to 14.8 (c) \(90 \%\) confidence interval for \(\mu: \quad 13.5\) to 16.5

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free