Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hypotheses for a statistical test are given, followed by several possible confidence intervals for different samples. In each case, use the confidence interval to state a conclusion of the test for that sample and give the significance level used. Hypotheses: \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1} \neq \mu_{2} .\) In addition, in each case for which the results are significant, state which group ( 1 or 2 ) has the larger mean. (a) \(95 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) : 0.12 to 0.54 (b) \(99 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) : -2.1 to 5.4 (c) \(90 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) : -10.8 to -3.7

Short Answer

Expert verified
Based on the given confidence intervals, we reject the null hypothesis for samples (a) and (c) and fail to reject it for sample (b). In case (a), group 1 has a larger mean. In case (b), we cannot determine which group has a larger mean. In case (c), group 2 has a larger mean.

Step by step solution

01

Interpret Confidence Interval (a)

A 95% confidence interval for \( \mu_{1} - \mu_{2} \) ranges from 0.12 to 0.54. This interval excludes 0, hence we reject the null hypothesis \( H_0: \mu_{1} = \mu_{2} \) at the 5% significance level. The positive difference suggests that group 1 has a larger mean.
02

Interpret Confidence Interval (b)

A 99% confidence interval for \( \mu_{1} - \mu_{2} \) ranges from -2.1 to 5.4. This interval contains 0, hence we fail to reject the null hypothesis \( H_0: \mu_{1} = \mu_{2} \) at the 1% significance level. We cannot conclude which group has a larger mean.
03

Interpret Confidence Interval (c)

A 90% confidence interval for \( \mu_{1} - \mu_{2} \) ranges from -10.8 to -3.7. This interval also excludes 0; hence we reject the null hypothesis \( H_0: \mu_{1} = \mu_{2} \) at the 10% significance level. The negative difference suggests that group 2 has a larger mean.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing 50 people in a driving simulator to find the average reaction time to hit the brakes when an object is seen in the view ahead.

Give null and alternative hypotheses for a population proportion, as well as sample results. Use StatKey or other technology to generate a randomization distribution and calculate a p-value. StatKey tip: Use "Test for a Single Proportion" and then "Edit Data" to enter the sample information. Hypotheses: \(H_{0}: p=0.7\) vs \(H_{a}: p<0.7\) Sample data: \(\hat{p}=125 / 200=0.625\) with \(n=200\)

In this exercise, we see that it is possible to use counts instead of proportions in testing a categorical variable. Data 4.7 describes an experiment to investigate the effectiveness of the two drugs desipramine and lithium in the treatment of cocaine addiction. The results of the study are summarized in Table 4.14 on page \(323 .\) The comparison of lithium to the placebo is the subject of Example 4.34 . In this exercise, we test the success of desipramine against a placebo using a different statistic than that used in Example 4.34. Let \(p_{d}\) and \(p_{c}\) be the proportion of patients who relapse in the desipramine group and the control group, respectively. We are testing whether desipramine has a lower relapse rate then a placebo. (a) What are the null and alternative hypotheses? (b) From Table 4.14 we see that 20 of the 24 placebo patients relapsed, while 10 of the 24 desipramine patients relapsed. The observed difference in relapses for our sample is $$\begin{aligned}D &=\text { desipramine relapses }-\text { placebo relapses } \\\&=10-20=-10\end{aligned}$$ If we use this difference in number of relapses as our sample statistic, where will the randomization distribution be centered? Why? (c) If the null hypothesis is true (and desipramine has no effect beyond a placebo), we imagine that the 48 patients have the same relapse behavior regardless of which group they are in. We create the randomization distribution by simulating lots of random assignments of patients to the two groups and computing the difference in number of desipramine minus placebo relapses for each assignment. Describe how you could use index cards to create one simulated sample. How many cards do you need? What will you put on them? What will you do with them?

Influencing Voters Exercise 4.39 on page 272 describes a possible study to see if there is evidence that a recorded phone call is more effective than a mailed flyer in getting voters to support a certain candidate. The study assumes a significance level of \(\alpha=0.05\) (a) What is the conclusion in the context of thisstudy if the p-value for the test is \(0.027 ?\) (b) In the conclusion in part (a), which type of error are we possibly making: Type I or Type II? Describe what that type of error means in this situation. (c) What is the conclusion if the p-value for the test is \(0.18 ?\)

Do iPads Help Kindergartners Learn: A Subtest The Auburn, Maine, school district conducted an early literacy experiment in the fall of 2011 . In September, half of the kindergarten classes were randomly assigned iPads (the intervention group) while the other half of the classes got them in December (the control group.) Kids were tested in September and December and the study measures the average difference in score gains between the control and intervention group. \(^{41}\) The experimenters tested whether the mean score for the intervention group was higher on the HRSIW subtest (Hearing and Recording Sounds in Words) than the mean score for the control group. (a) State the null and alternative hypotheses of the test and define any relevant parameters. (b) The p-value for the test is 0.02 . State the conclusion of the test in context. Are the results statistically significant at the \(5 \%\) level? (c) The effect size was about two points, which means the mean score for the intervention group was approximately two points higher than the mean score for the control group on this subtest. A school board member argues, "While these results might be statistically significant, they may not be practically significant." What does she mean by this in this context?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free