Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Pesticides and ADHD Are children with higher exposure to pesticides more likely to develop ADHD (attention-deficit/hyperactivity disorder)? In one study, authors measured levels of urinary dialkyl phosphate (DAP, a common pesticide) concentrations and ascertained ADHD diagnostic status (Yes/No) for 1139 children who were representative of the general US population. \(^{7}\) The subjects were divided into two groups based on high or low pesticide concentrations, and we compare the proportion with ADHD in each group. (a) Define the relevant parameter(s) and state the null and alternative hypotheses. (b) In the sample, children with high pesticide levels were more likely to be diagnosed with ADHD. Can we necessarily conclude that, in the population, children with high pesticide levels are more likely to be diagnosed with ADHD? (Whether or not we can make this generalization is, in fact, the statistical question of interest.) (c) In the study, evidence was found to support the alternative hypothesis. Explain what that means in the context of pesticide exposure and ADHD?

Short Answer

Expert verified
The parameters are the proportions of children with or without ADHD among high and low pesticide exposure groups. The null hypothesis states no difference in ADHD occurrence across these groups, while the alternative indicates higher likelihood with greater exposure. Generalizing the conclusion drawn from the sample to the whole population requires statistical support such as hypothesis testing. Evidence favoring the alternative hypothesis indicates a greater likelihood of children with high exposure developing ADHD, although causation isn't confirmed.

Step by step solution

01

Define the parameters, null and alternative hypotheses

The parameters of interest are the proportions of children with ADHD in the groups with high and low pesticide exposure, usually denoted by \(p_1\) and \(p_2\). The null hypothesis could be that the proportion of children who develop ADHD is the same regardless of pesticide exposure level, i.e., \(H_0: p_1 = p_2\). The alternative hypothesis, however, would propose a difference in ADHD occurrence between the groups, specifically stating that children with high pesticide exposure are more likely to develop ADHD. Therefore, the alternative hypothesis could be \(H_a: p_1 > p_2\).
02

Discussing the possibility of generalization

Although the study found that children with high pesticide levels were more likely to be diagnosed with ADHD in the sample, it's not necessarily appropriate to conclude the same about the overall population. This reservation is due to the possibility of sampling bias or errors in the study, or simply the chance variation in samples. Hence, it would require further statistical testing, such as hypothesis testing to draw such a population-wide conclusion.
03

Interpretation of the evidence in favor of the alternative hypothesis

If there's evidence to support the alternative hypothesis, it implies that the study's results are statistically significant and not likely due to chance. In this context, it means that children with higher pesticide exposure are more likely to develop ADHD than those with lower exposure. However, note that this does not necessarily prove a causal relationship, as correlation does not always imply causation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Flying Home for the Holidays, On Time In Exercise 4.115 on page \(302,\) we compared the average difference between actual and scheduled arrival times for December flights on two major airlines: Delta and United. Suppose now that we are only interested in the proportion of flights arriving more than 30 minutes after the scheduled time. Of the 1,000 Delta flights, 67 arrived more than 30 minutes late, and of the 1,000 United flights, 160 arrived more than 30 minutes late. We are testing to see if this provides evidence to conclude that the proportion of flights that are over 30 minutes late is different between flying United or Delta. (a) State the null and alternative hypothesis. (b) What statistic will be recorded for each of the simulated samples to create the randomization distribution? What is the value of that statistic for the observed sample? (c) Use StatKey or other technology to create a randomization distribution. Estimate the p-value for the observed statistic found in part (b). (d) At a significance level of \(\alpha=0.01\), what is the conclusion of the test? Interpret in context. (e) Now assume we had only collected samples of size \(75,\) but got essentially the same proportions (5/75 late flights for Delta and \(12 / 75\) late flights for United). Repeating steps (b) through (d) on these smaller samples, do you come to the same conclusion?

A study \(^{20}\) conducted in June 2015 examines ownership of tablet computers by US adults. A random sample of 959 people were surveyed, and we are told that 197 of the 455 men own a tablet and 235 of the 504 women own a tablet. We want to test whether the survey results provide evidence of a difference in the proportion owning a tablet between men and women. (a) State the null and alternative hypotheses, and define the parameters. (b) Give the notation and value of the sample statistic. In the sample, which group has higher tablet ownership: men or women? (c) Use StatKey or other technology to find the pvalue.

Exercise 4.19 on page 269 describes a study investigating the effects of exercise on cognitive function. \({ }^{31}\) Separate groups of mice were exposed to running wheels for \(0,2,4,7,\) or 10 days. Cognitive function was measured by \(Y\) maze performance. The study was testing whether exercise improves brain function, whether exercise reduces levels of BMP (a protein which makes the brain slower and less nimble), and whether exercise increases the levels of noggin (which improves the brain's ability). For each of the results quoted in parts (a), (b), and (c), interpret the information about the p-value in terms of evidence for the effect. (a) "Exercise improved Y-maze performance in most mice by the 7 th day of exposure, with further increases after 10 days for all mice tested \((p<.01)\) (b) "After only two days of running, BMP ... was reduced \(\ldots\) and it remained decreased for all subsequent time-points \((p<.01)\)." (c) "Levels of noggin ... did not change until 4 days, but had increased 1.5 -fold by \(7-10\) days of exercise \((p<.001)\)." (d) Which of the tests appears to show the strongest statistical effect? (e) What (if anything) can we conclude about the effects of exercise on mice?

Polling 1000 people in a large community to determine if there is evidence for the claim that the percentage of people in the community living in a mobile home is greater then \(10 \%\).

Testing 50 people in a driving simulator to find the average reaction time to hit the brakes when an object is seen in the view ahead.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free