Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether the sets of hypotheses given are valid hypotheses. State whether each set of hypotheses is valid for a statistical test. If not valid, explain why not. (a) \(H_{0}: \rho=0 \quad\) vs \(\quad H_{a}: \rho<0\) (b) \(H_{0}: \hat{p}=0.3 \quad\) vs \(\quad H_{a}: \hat{p} \neq 0.3\) (c) \(H_{0}: \mu_{1} \neq \mu_{2} \quad\) vs \(\quad H_{a}: \mu_{1}=\mu_{2}\) (d) \(H_{0}: p=25 \quad\) vs \(\quad H_{a}: p \neq 25\)

Short Answer

Expert verified
a) Valid b) Valid c) Invalid d) Valid

Step by step solution

01

Evaluate first set

For the first set of hypothesis, we have \(H_{0}: \rho=0\) and \(H_{a}: \rho<0\). It is acceptable because if the null hypothesis is rejected, the alternative is automatically considered to be true. Thus, it's a valid set of hypotheses.
02

Evaluate second set

For the second set \(H_{0}: \hat{p}=0.3\) and \(H_{a}: \hat{p} \neq 0.3\), we can also observe this sort of opposition between the null hypothesis and alternative hypothesis, thus they are valid.
03

Evaluate third set

For hypothesis pair \(H_{0}: \mu_{1} \neq \mu_{2}\) and \(H_{a}: \mu_{1}=\mu_{2}\), the null hypothesis assumes inequality, while the alternative assumes equality. This is the opposite of the usual setup, hence it is not a valid set. Null hypothesis should always contain equal sign.
04

Evaluate fourth set

For the fourth and final set, \(H_{0}: p=25\) and \(H_{a}: p \neq 25\), there is a clear opposition between the null and alternative hypothesis where the null hypothesis states that the parameter is equal to a specific value, and the alternative hypothesis states that it does not equal that value. Hence, this represents a valid set of hypotheses.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). A pharmaceutical company is testing to see whether its new drug is significantly better than the existing drug on the market. It is more expensive than the existing drug. Which significance level would the company prefer? Which significance level would the consumer prefer?

Exercise 2.19 on page 58 introduces a study examining whether giving antibiotics in infancy increases the likelihood that the child will be overweight. Prescription records were examined to determine whether or not antibiotics were prescribed during the first year of a child's life, and each child was classified as overweight or not at age 12. (Exercise 2.19 looked at the results for age 9.) The researchers compared the proportion overweight in each group. The study concludes that: "Infants receiving antibiotics in the first year of life were more likely to be overweight later in childhood compared with those who were unexposed \((32.4 \%\) versus \(18.2 \%\) at age 12 \(P=0.002) "\) (a) What is the explanatory variable? What is the response variable? Classify each as categorical or quantitative. (b) Is this an experiment or an observational study? (c) State the null and alternative hypotheses and define the parameters. (d) Give notation and the value of the relevant sample statistic. (e) Use the p-value to give the formal conclusion of the test (Reject \(H_{0}\) or Do not reject \(H_{0}\) ) and to give an indication of the strength of evidence for the result. (f) Can we conclude that whether or not children receive antibiotics in infancy causes the difference in proportion classified as overweight?

Mating Choice and Offspring Fitness: MiniExperiments Exercise 4.153 explores the question of whether mate choice improves offspring fitness in fruit flies, and describes two seemingly identical experiments yielding conflicting results (one significant, one insignificant). In fact, the second source was actually a series of three different experiments, and each full experiment was comprised of 50 different mini-experiments (runs), 10 each on five different days. (a) Suppose each of the 50 mini-experiments from the first study were analyzed individually. If mating choice has no impact on offspring fitness, about how many of these \(50 \mathrm{p}\) -values would you expect to yield significant results at \(\alpha=0.05 ?\) (b) The 50 p-values, testing the alternative \(H_{a}\) : \(p_{C}>p_{N C}\) (proportion of flies surviving is higher in the mate choice group) are given below: $$ \begin{array}{lllllllllll} \text { Day 1: } & 0.96 & 0.85 & 0.14 & 0.54 & 0.76 & 0.98 & 0.33 & 0.84 & 0.21 & 0.89 \\ \text { Day 2: } & 0.89 & 0.66 & 0.67 & 0.88 & 1.00 & 0.01 & 1.00 & 0.77 & 0.95 & 0.27 \\ \text { Day 3: } & 0.58 & 0.11 & 0.02 & 0.00 & 0.62 & 0.01 & 0.79 & 0.08 & 0.96 & 0.00 \\ \text { Day 4: } & 0.89 & 0.13 & 0.34 & 0.18 & 0.11 & 0.66 & 0.01 & 0.31 & 0.69 & 0.19 \\ \text { Day 5: } & 0.42 & 0.06 & 0.31 & 0.24 & 0.24 & 0.16 & 0.17 & 0.03 & 0.02 & 0.11 \end{array} $$ How many are actually significant using \(\alpha=0.05 ?\) (c) You may notice that two p-values (the fourth and last run on day 3 ) are 0.00 when rounded to two decimal places. The second of these is actually 0.0001 if we report more decimal places. This is very significant! Would it be appropriate and/or ethical to just report this one run, yielding highly statistically significant evidence that mate choice improves offspring fitness? Explain. (d) You may also notice that two of the p-values on day 2 are 1 (rounded to two decimal places). If we had been testing the opposite alternative, \(H_{a}:\) \(p_{C}

A statistics instructor would like to ask "clicker" questions that about \(80 \%\) of her students in a large lecture class will get correct. A higher proportion would be too easy and a lower proportion might discourage students. Suppose that she tries a sample of questions and receives 76 correct answers and 24 incorrect answers among 100 responses. The hypotheses of interest are \(H_{0}: p=0.80\) vs \(H_{a}: p \neq 0.80 .\) Discuss whether or not the methods described below would be appropriate ways to generate randomization samples in this setting. Explain your reasoning in each case. (a) Sample 100 answers (with replacement) from the original student responses. Count the number of correct responses. (b) Sample 100 answers (with replacement) from a set consisting of 8 correct responses and 2 incorrect responses. Count the number of correct mses.

The same sample statistic is used to test a hypothesis, using different sample sizes. In each case, use StatKey or other technology to find the p-value and indicate whether the results are significant at a \(5 \%\) level. Which sample size provides the strongest evidence for the alternative hypothesis? Testing \(H_{0}: p=0.5\) vs \(H_{a}: p>0.5\) using \(\hat{p}=0.58\) with each of the following sample sizes: (a) \(\hat{p}=29 / 50=0.58\) (b) \(\hat{p}=290 / 500=0.58\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free