Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). Using a sample of 10 games each to see if your average score at Wii bowling is significantly more than your friend's average score.

Short Answer

Expert verified
In this context, it would make more sense to use a relatively large significance level, such as \(\alpha = 0.10\).

Step by step solution

01

Understand the context

We're investigating whether the average score in Wii bowling is significantly more than the friend's average score. Therefore, it's a friendly competition and the truth of whether one person scores higher on average does not have serious real-world consequences.
02

Assess the potential consequences of a false positive result

Here, falsely deciding that your score is higher on average (a false positive) would only result in a minor mishap, as it only concerns a friendly competition. No one would be terribly hurt by it.
03

Decide the appropriate significance level

Given that the potential consequences of a false positive result are minor, it is less crucial to require a lot of evidence before deciding that your score is higher on average. Therefore, it would make more sense to use a relatively large significance level, such as \(\alpha = 0.10\), as it requires less evidence to reject the null hypothesis (your friend's average score is the same or more than yours).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe tests we might conduct based on Data 2.3 , introduced on page \(69 .\) This dataset, stored in ICUAdmissions, contains information about a sample of patients admitted to a hospital Intensive Care Unit (ICU). For each of the research questions below, define any relevant parameters and state the appropriate null and alternative hypotheses. Is there a difference in the proportion who receive CPR based on whether the patient's race is white or black?

Hypotheses for a statistical test are given, followed by several possible confidence intervals for different samples. In each case, use the confidence interval to state a conclusion of the test for that sample and give the significance level used. Hypotheses: \(H_{0}: p=0.5\) vs \(H_{a}: p \neq 0.5\) (a) 95\% confidence interval for \(p: \quad 0.53\) to 0.57 (b) \(95 \%\) confidence interval for \(p: \quad 0.41\) to 0.52 (c) 99\% confidence interval for \(p: \quad 0.35\) to 0.55

Mating Choice and Offspring Fitness Does the ability to choose a mate improve offspring fitness in fruit flies? Researchers have studied this by taking female fruit flies and randomly dividing them into two groups; one group is put into a cage with a large number of males and able to freely choose who to mate with, while flies in the other group are each put into individual vials, each with only one male, giving no choice in who to mate with. Females are then put into egg laying chambers, and a certain number of larvae collected. Do the larvae from the mate choice group exhibit higher survival rates? A study \(^{44}\) published in Nature found that mate choice does increase offspring fitness in fruit flies (with p-value \(<0.02\) ), yet this result went against conventional wisdom in genetics and was quite controversial. Researchers attempted to replicate this result with a series of related experiments, \({ }^{45}\) with data provided in MateChoice. (a) In the first replication experiment, using the same species of fruit fly as the original Nature study, 6067 of the 10000 larvae from the mate choice group survived and 5976 of the 10000 larvae from the no mate choice group survived. Calculate the p-value. (b) Using a significance level of \(\alpha=0.05\) and \(\mathrm{p}\) -value from (a), state the conclusion in context. (c) Actually, the 10,000 larvae in each group came from a series of 50 different runs of the experiment, with 200 larvae in each group for each run. The researchers believe that conditions dif- fer from run to run, and thus it makes sense to treat each \(\mathrm{run}\) as a case (rather than each fly). In this analysis, we are looking at paired data, and the response variable would be the difference in the number of larvae surviving between the choice group and the no choice group, for each of the 50 runs. The counts (Choice and NoChoice and difference (Choice \(-\) NoChoice) in number of surviving larva are stored in MateChoice. Using the single variable of differences, calculate the p-value for testing whether the average difference is greater than \(0 .\) (Hint: this is a single quantitative variable, so the corresponding test would be for a single mean.) (d) Using a significance level of \(\alpha=0.05\) and the p-value from (c), state the conclusion in context. (e) The experiment being tested in parts (a)-(d) was designed to mimic the experiment from the original study, yet the original study yielded significant results while this study did not. If mate choice really does improve offspring fitness in fruit flies, did the follow-up study being analyzed in parts (a)-(d) make a Type I, Type II, or no error? (f) If mate choice really does not improve offspring fitness in fruit flies, did the original Nature study make a Type I, Type II, or no error?

Flaxseed and Omega-3 Exercise 4.30 on page 271 describes a company that advertises that its milled flaxseed contains, on average, at least \(3800 \mathrm{mg}\) of ALNA, the primary omega-3 fatty acid in flaxseed, per tablespoon. In each case below, which of the standard significance levels, \(1 \%\) or \(5 \%\) or \(10 \%,\) makes the most sense for that situation? (a) The company plans to conduct a test just to double-check that its claim is correct. The company is eager to find evidence that the average amount per tablespoon is greater than 3800 (their alternative hypothesis), and is not really worried about making a mistake. The test is internal to the company and there are unlikely to be any real consequences either way. (b) Suppose, instead, that a consumer organization plans to conduct a test to see if there is evidence against the claim that the product contains at least \(3800 \mathrm{mg}\) per tablespoon. If the organization finds evidence that the advertising claim is false, it will file a lawsuit against the flaxseed company. The organization wants to be very sure that the evidence is strong, since if the company is sued incorrectly, there could be very serious consequences.

A confidence interval for a sample is given, followed by several hypotheses to test using that sample. In each case, use the confidence interval to give a conclusion of the test (if possible) and also state the significance level you are using. A \(90 \%\) confidence interval for \(p_{1}-p_{2}: 0.07\) to 0.18 (a) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1} \neq p_{2}\) (b) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1}>p_{2}\) (c) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1}

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free