Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Flaxseed and Omega-3 Exercise 4.30 on page 271 describes a company that advertises that its milled flaxseed contains, on average, at least \(3800 \mathrm{mg}\) of ALNA, the primary omega-3 fatty acid in flaxseed, per tablespoon. In each case below, which of the standard significance levels, \(1 \%\) or \(5 \%\) or \(10 \%,\) makes the most sense for that situation? (a) The company plans to conduct a test just to double-check that its claim is correct. The company is eager to find evidence that the average amount per tablespoon is greater than 3800 (their alternative hypothesis), and is not really worried about making a mistake. The test is internal to the company and there are unlikely to be any real consequences either way. (b) Suppose, instead, that a consumer organization plans to conduct a test to see if there is evidence against the claim that the product contains at least \(3800 \mathrm{mg}\) per tablespoon. If the organization finds evidence that the advertising claim is false, it will file a lawsuit against the flaxseed company. The organization wants to be very sure that the evidence is strong, since if the company is sued incorrectly, there could be very serious consequences.

Short Answer

Expert verified
In Scenario 1, a 10% significance level would be most sensible as the company is not really worried about making a mistake, just desiring to find evidence for their claim. For Scenario 2, a 1% significance level would be best as the consumer organization wishes to minimize risk due to the potential serious consequences of a mistake.

Step by step solution

01

Decision on significance level - Scenario 1

In the first scenario, where the company is conducting internal tests and is not concerned about potential errors, a higher significance level like 10% is appropriate as it's more lenient. It would increase the chance of detecting a real effect (the average amount being greater than 3800mg) but also increase the risk of Type I error (rejecting true null hypothesis).
02

Decision on significance level - Scenario 2

In the second scenario, a consumer organization, due to potential severe consequences of false accusations (lawsuit), would want to minimize errors. Therefore, a lower significance level such as 1% is more suitable as it's more stringent, reducing the possibility of a Type I error (making false accusations) but making it harder to detect a real effect if it exists.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

After exercise, massage is often used to relieve pain, and a recent study 33 shows that it also may relieve inflammation and help muscles heal. In the study, 11 male participants who had just strenuously exercised had 10 minutes of massage on one quadricep and no treatment on the other, with treatment randomly assigned. After 2.5 hours, muscle biopsies were taken and production of the inflammatory cytokine interleukin-6 was measured relative to the resting level. The differences (control minus massage) are given in Table 4.11 . $$ \begin{array}{lllllllllll} 0.6 & 4.7 & 3.8 & 0.4 & 1.5 & -1.2 & 2.8 & -0.4 & 1.4 & 3.5 & -2.8 \end{array} $$ (a) Is this an experiment or an observational study? Why is it not double blind? (b) What is the sample mean difference in inflammation between no massage and massage? (c) We want to test to see if the population mean difference \(\mu_{D}\) is greater than zero, meaning muscle with no treatment has more inflammation than muscle that has been massaged. State the null and alternative hypotheses. (d) Use Statkey or other technology to find the p-value from a randomization distribution. (e) Are the results significant at a \(5 \%\) level? At a \(1 \%\) level? State the conclusion of the test if we assume a \(5 \%\) significance level (as the authors of the study did).

Using the complete voting records of a county to see if there is evidence that more than \(50 \%\) of the eligible voters in the county voted in the last election.

In this exercise, we see that it is possible to use counts instead of proportions in testing a categorical variable. Data 4.7 describes an experiment to investigate the effectiveness of the two drugs desipramine and lithium in the treatment of cocaine addiction. The results of the study are summarized in Table 4.14 on page \(323 .\) The comparison of lithium to the placebo is the subject of Example 4.34 . In this exercise, we test the success of desipramine against a placebo using a different statistic than that used in Example 4.34. Let \(p_{d}\) and \(p_{c}\) be the proportion of patients who relapse in the desipramine group and the control group, respectively. We are testing whether desipramine has a lower relapse rate then a placebo. (a) What are the null and alternative hypotheses? (b) From Table 4.14 we see that 20 of the 24 placebo patients relapsed, while 10 of the 24 desipramine patients relapsed. The observed difference in relapses for our sample is $$\begin{aligned}D &=\text { desipramine relapses }-\text { placebo relapses } \\\&=10-20=-10\end{aligned}$$ If we use this difference in number of relapses as our sample statistic, where will the randomization distribution be centered? Why? (c) If the null hypothesis is true (and desipramine has no effect beyond a placebo), we imagine that the 48 patients have the same relapse behavior regardless of which group they are in. We create the randomization distribution by simulating lots of random assignments of patients to the two groups and computing the difference in number of desipramine minus placebo relapses for each assignment. Describe how you could use index cards to create one simulated sample. How many cards do you need? What will you put on them? What will you do with them?

How influenced are consumers by price and marketing? If something costs more, do our expectations lead us to believe it is better? Because expectations play such a large role in reality, can a product that costs more (but is in reality identical) actually be more effective? Baba Shiv, a neuroeconomist at Stanford, conducted a study \(^{25}\) involving 204 undergraduates. In the study, all students consumed a popular energy drink which claims on its packaging to increase mental acuity. The students were then asked to solve a series of puzzles. The students were charged either regular price ( \(\$ 1.89\) ) for the drink or a discount price \((\$ 0.89)\). The students receiving the discount price were told that they were able to buy the drink at a discount since the drinks had been purchased in bulk. The authors of the study describe the results: "the number of puzzles solved was lower in the reduced-price condition \((M=4.2)\) than in the regular-price condition \((M=5.8) \ldots p<.0001 . "\) (a) What can you conclude from the study? How strong is the evidence for the conclusion? (b) These results have been replicated in many similar studies. As Jonah Lehrer tells us: "According to Shiv, a kind of placebo effect is at work. Since we expect cheaper goods to be less effective, they generally are less effective, even if they are identical to more expensive products. This is why brand-name aspirin works better than generic aspirin and why Coke tastes better than cheaper colas, even if most consumers can't tell the difference in blind taste tests."26 Discuss the implications of this research in marketing and pricing.

Introductory statistics students fill out a survey on the first day of class. One of the questions asked is "How many hours of exercise do you typically get each week?" Responses for a sample of 50 students are introduced in Example 3.25 on page 244 and stored in the file ExerciseHours. The summary statistics are shown in the computer output below. The mean hours of exercise for the combined sample of 50 students is 10.6 hours per week and the standard deviation is 8.04 . We are interested in whether these sample data provide evidence that the mean number of hours of exercise per week is different between male and female statistics students. $$\begin{array}{lllrrrr} \text { Variable } & \text { Gender } & \text { N } & \text { Mean } & \text { StDev } & \text { Minimum } & \text{ Maximum } \\\\\text { Exercise } & \mathrm{F} & 30 & 9.40 & 7.41 & 0.00 & 34.00 \\\& \mathrm{M} & 20 & 12.40 & 8.80 & 2.00 & 30.00\end{array}$$ Discuss whether or not the methods described below would be appropriate ways to generate randomization samples that are consistent with \(H_{0}: \mu_{F}=\mu_{M}\) vs \(H_{a}: \mu_{F} \neq \mu_{M} .\) Explain your reasoning in each case. (a) Randomly label 30 of the actual exercise values with "F" for the female group and the remaining 20 exercise values with "M" for the males. Compute the difference in the sample means, \(\bar{x}_{F}-\bar{x}_{M}\). (b) Add 1.2 to every female exercise value to give a new mean of 10.6 and subtract 1.8 from each male exercise value to move their mean to 10.6 (and match the females). Sample 30 values (with replacement) from the shifted female values and 20 values (with replacement) from the shifted male values. Compute the difference in the sample means, \(\bar{x}_{F}-\bar{x}_{M}\) (c) Combine all 50 sample values into one set of data having a mean amount of 10.6 hours. Select 30 values (with replacement) to represent a sample of female exercise hours and 20 values (also with replacement) for a sample of male exercise values. Compute the difference in the sample means, \(\bar{x}_{F}-\bar{x}_{M}\) .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free