Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We are conducting many hypothesis tests to test a claim. In every case, assume that the null hypothesis is true. Approximately how many of the tests will incorrectly find significance? 40 tests using a significance level of \(10 \%\).

Short Answer

Expert verified
It is expected that 4 out of the 40 tests will incorrectly find significance at a 10% significance level.

Step by step solution

01

Understanding the concept of significance level

A significance level, marked as 10% in this case, corresponds to the probability that the test statistics will fall into the critical region when the null hypothesis is true. In plain terms, this is the probability of rejecting the null hypothesis when it is in fact true. This is also known as a Type I error.
02

Determine the number of incorrect rejections

The number of tests that will incorrectly find significance is based on the significance level. If we conduct 40 tests and each has a 10% chance of incorrectly rejecting the null hypothesis, it would be expected that \( 40 * 0.10 = 4 \) tests will incorrectly reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Match the four \(\mathrm{p}\) -values with the appropriate conclusion: (a) The evidence against the null hypothesis is significant, but only at the \(10 \%\) level. (b) The evidence against the null and in favor of the alternative is very strong. (c) There is not enough evidence to reject the null hypothesis, even at the \(10 \%\) level. (d) The result is significant at a \(5 \%\) level but not at a \(1 \%\) level. I. 0.00008 II. 0.0571 III. 0.0368 IV. \(\quad 0.1753\)

Data 4.3 on page 265 introduces a situation in which a restaurant chain is measuring the levels of arsenic in chicken from its suppliers. The question is whether there is evidence that the mean level of arsenic is greater than \(80 \mathrm{ppb},\) so we are testing \(H_{0}: \mu=80\) vs \(H_{a}:\) \(\mu>80,\) where \(\mu\) represents the average level of arsenic in all chicken from a certain supplier. It takes money and time to test for arsenic, so samples are often small. Suppose \(n=6\) chickens from one supplier are tested, and the levels of arsenic (in ppb) are: \(\begin{array}{llllll}68, & 75, & 81, & 93, & 95, & 134\end{array}\) (a) What is the sample mean for the data? (b) Translate the original sample data by the appropriate amount to create a new dataset in which the null hypothesis is true. How do the sample size and standard deviation of this new dataset compare to the sample size and standard deviation of the original dataset? (c) Write the six new data values from part (b) on six cards. Sample from these cards with replacement to generate one randomization sample. (Select a card at random, record the value, put it back, select another at random, until you have a sample of size \(6,\) to match the original sample size.) List the values in the sample and give the sample mean. (d) Generate 9 more simulated samples, for a total of 10 samples for a randomization distribution. Give the sample mean in each case and create a small dotplot. Use an arrow to locate the original sample mean on your dotplot.

In this exercise, we see that it is possible to use counts instead of proportions in testing a categorical variable. Data 4.7 describes an experiment to investigate the effectiveness of the two drugs desipramine and lithium in the treatment of cocaine addiction. The results of the study are summarized in Table 4.14 on page \(323 .\) The comparison of lithium to the placebo is the subject of Example 4.34 . In this exercise, we test the success of desipramine against a placebo using a different statistic than that used in Example 4.34. Let \(p_{d}\) and \(p_{c}\) be the proportion of patients who relapse in the desipramine group and the control group, respectively. We are testing whether desipramine has a lower relapse rate then a placebo. (a) What are the null and alternative hypotheses? (b) From Table 4.14 we see that 20 of the 24 placebo patients relapsed, while 10 of the 24 desipramine patients relapsed. The observed difference in relapses for our sample is $$\begin{aligned}D &=\text { desipramine relapses }-\text { placebo relapses } \\\&=10-20=-10\end{aligned}$$ If we use this difference in number of relapses as our sample statistic, where will the randomization distribution be centered? Why? (c) If the null hypothesis is true (and desipramine has no effect beyond a placebo), we imagine that the 48 patients have the same relapse behavior regardless of which group they are in. We create the randomization distribution by simulating lots of random assignments of patients to the two groups and computing the difference in number of desipramine minus placebo relapses for each assignment. Describe how you could use index cards to create one simulated sample. How many cards do you need? What will you put on them? What will you do with them?

We are conducting many hypothesis tests to test a claim. In every case, assume that the null hypothesis is true. Approximately how many of the tests will incorrectly find significance? 300 tests using a significance level of \(1 \%\).

Data 4.2 on page 263 describes a study of a possible relationship between the perceived malevolence of a team's uniforms and penalties called against the team. In Example 4.36 on page 326 we construct a randomization distribution to test whether there is evidence of a positive correlation between these two variables for NFL teams. The data in MalevolentUniformsNHL has information on uniform malevolence and penalty minutes (standardized as \(z\) -scores) for National Hockey League (NHL) teams. Use StatKey or other technology to perform a test similar to the one in Example 4.36 using the NHL hockey data. Use a \(5 \%\) significance level and be sure to show all details of the test.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free