Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We are conducting many hypothesis tests to test a claim. In every case, assume that the null hypothesis is true. Approximately how many of the tests will incorrectly find significance? 300 tests using a significance level of \(1 \%\).

Short Answer

Expert verified
Approximately 3 tests will incorrectly find significance.

Step by step solution

01

Understand the Data

The data given is the total number of tests which is 300 and the significance level which is \(1\% = 0.01\). The null hypothesis is assumed to be true.
02

Calculate the Expected False Positives

To find out how many of the tests will incorrectly find significance (Type I error), multiply the total number of tests by the significance level. Mathematically, this can be written as: \[ \text{Number of Type I errors} = \text{Total number of tests} \times \text{Significance level} \] Substitute the given values into the equation: \[ \text{Number of Type I errors} = 300 \times 0.01 \]
03

Compute the Result

After performing the multiplication, get the approximate number of tests that will incorrectly find significance. Therefore, the solution to the problem is the result of this computation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Hypothesis Testing
At the heart of hypothesis testing lies the null hypothesis, symbolized as ull hypothesisNull hypothesis hypothesis.
False Positives in Statistics
False positives throw a wrench into the works of statistical analysis. They're akin to a fire alarm going off without a trace of fire—a 'Type I error.' In statistics, a false positive is concluding that an effect or difference exists when in fact, it doesn't, assuming that the null hypothesis is true.

The trouble with false positives is their potential to mislead. In medical testing, this could mean diagnosing a healthy patient with a condition they don't have. In legal terms, it's the innocent being wrongfully convicted. False positives not only stir undue concern or relief but can also lead to unnecessary treatments or investigations.

To limit the occurrence of false positives, scientists set a threshold before research begins—a significance level, which serves as a benchmark to gauge if results are due to chance or if they reflect a genuine effect. Keeping this level stringent helps in reducing the risk of these pesky Type I errors.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 3.129 on page \(254,\) we see that the home team was victorious in 70 games out of a sample of 120 games in the FA premier league, a football (soccer) league in Great Britain. We wish to investigate the proportion \(p\) of all games won by the home team in this league. (a) Use StatKeyor other technology to find and interpret a \(90 \%\) confidence interval for the proportion of games won by the home team. (b) State the null and alternative hypotheses for a test to see if there is evidence that the proportion is different from 0.5 . (c) Use the confidence interval from part (a) to make a conclusion in the test from part (b). State the confidence level used. (d) Use StatKey or other technology to create a randomization distribution and find the p-value for the test in part (b). (e) Clearly interpret the result of the test using the p-value and using a \(10 \%\) significance level. Does your answer match your answer from part (c)? (f) What information does the confidence interval give that the p-value doesn't? What information does the p-value give that the confidence interval doesn't? (g) What's the main difference between the bootstrap distribution of part (a) and the randomization distribution of part (d)?

The Ignorance Surveys were conducted in 2013 using random sampling methods in four different countries under the leadership of Hans Rosling, a Swedish statistician and international health advocate. The survey questions were designed to assess the ignorance of the public to global population trends. The survey was not just designed to measure ignorance (no information), but if preconceived notions can lead to more wrong answers than would be expected by random guessing. One question asked, "In the last 20 years the proportion of the world population living in extreme poverty has \(\ldots, "\) and three choices were provided: 1) "almost doubled" 2) "remained more or less the same," and 3) "almost halved." Of 1005 US respondents, just \(5 \%\) gave the correct answer: "almost halved." 34 We would like to test if the percent of correct choices is significantly different than what would be expected if the participants were just randomly guessing between the three choices. (a) What are the null and alternative hypotheses? (b) Using StatKey or other technology, construct a randomization distribution and compute the p-value. (c) State the conclusion in context.

Female primates visibly display their fertile window, often with red or pink coloration. Do humans also do this? A study \(^{18}\) looked at whether human females are more likely to wear red or pink during their fertile window (days \(6-14\) of their cycle \()\). They collected data on 24 female undergraduates at the University of British Columbia, and asked each how many days it had been since her last period, and observed the color of her shirt. Of the 10 females in their fertile window, 4 were wearing red or pink shirts. Of the 14 females not in their fertile window, only 1 was wearing a red or pink shirt. (a) State the null and alternative hypotheses. (b) Calculate the relevant sample statistic, \(\hat{p}_{f}-\hat{p}_{n f}\), for the difference in proportion wearing a pink or red shirt between the fertile and not fertile groups. (c) For the 1000 statistics obtained from the simulated randomization samples, only 6 different values of the statistic \(\hat{p}_{f}-\hat{p}_{n f}\) are possible. Table 4.7 shows the number of times each difference occurred among the 1000 randomizations. Calculate the p-value.

Testing 50 people in a driving simulator to find the average reaction time to hit the brakes when an object is seen in the view ahead.

A study \(^{20}\) conducted in June 2015 examines ownership of tablet computers by US adults. A random sample of 959 people were surveyed, and we are told that 197 of the 455 men own a tablet and 235 of the 504 women own a tablet. We want to test whether the survey results provide evidence of a difference in the proportion owning a tablet between men and women. (a) State the null and alternative hypotheses, and define the parameters. (b) Give the notation and value of the sample statistic. In the sample, which group has higher tablet ownership: men or women? (c) Use StatKey or other technology to find the pvalue.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free