Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A situation is described for a statistical test. In each case, define the relevant parameter(s) and state the null and alternative hypotheses. Testing to see if average sales are higher in stores where customers are approached by salespeople than in stores where they aren't.

Short Answer

Expert verified
The parameter is average sales. The null hypothesis is \(H_0: \mu_1 - \mu_2 = 0\), and the alternative hypothesis is \(H_A: \mu_1 - \mu_2 > 0\).

Step by step solution

01

Identify the Parameter

The parameter that will be compared in this study is the average sales. We will denote the average sales where customers are approached by salespeople as \(\mu_1\) and where they aren't approached as \(\mu_2\).
02

State the Null Hypothesis

The null hypothesis suggests that there is no difference between the parameters. So we state it as \(H_0: \mu_1 - \mu_2 = 0\), meaning the average sales are the same whether or not customers are approached by salespeople.
03

State the Alternative Hypothesis

The alternative hypothesis represents the scenario we are interested in proving, i.e., the average sales are higher in stores where customers are approached by salespeople than in stores where they aren't. Thus we phrase it as \(H_A: \mu_1 - \mu_2 > 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using the definition of a p-value, explain why the area in the tail of a randomization distribution is used to compute a p-value.

Mating Choice and Offspring Fitness Does the ability to choose a mate improve offspring fitness in fruit flies? Researchers have studied this by taking female fruit flies and randomly dividing them into two groups; one group is put into a cage with a large number of males and able to freely choose who to mate with, while flies in the other group are each put into individual vials, each with only one male, giving no choice in who to mate with. Females are then put into egg laying chambers, and a certain number of larvae collected. Do the larvae from the mate choice group exhibit higher survival rates? A study \(^{44}\) published in Nature found that mate choice does increase offspring fitness in fruit flies (with p-value \(<0.02\) ), yet this result went against conventional wisdom in genetics and was quite controversial. Researchers attempted to replicate this result with a series of related experiments, \({ }^{45}\) with data provided in MateChoice. (a) In the first replication experiment, using the same species of fruit fly as the original Nature study, 6067 of the 10000 larvae from the mate choice group survived and 5976 of the 10000 larvae from the no mate choice group survived. Calculate the p-value. (b) Using a significance level of \(\alpha=0.05\) and \(\mathrm{p}\) -value from (a), state the conclusion in context. (c) Actually, the 10,000 larvae in each group came from a series of 50 different runs of the experiment, with 200 larvae in each group for each run. The researchers believe that conditions dif- fer from run to run, and thus it makes sense to treat each \(\mathrm{run}\) as a case (rather than each fly). In this analysis, we are looking at paired data, and the response variable would be the difference in the number of larvae surviving between the choice group and the no choice group, for each of the 50 runs. The counts (Choice and NoChoice and difference (Choice \(-\) NoChoice) in number of surviving larva are stored in MateChoice. Using the single variable of differences, calculate the p-value for testing whether the average difference is greater than \(0 .\) (Hint: this is a single quantitative variable, so the corresponding test would be for a single mean.) (d) Using a significance level of \(\alpha=0.05\) and the p-value from (c), state the conclusion in context. (e) The experiment being tested in parts (a)-(d) was designed to mimic the experiment from the original study, yet the original study yielded significant results while this study did not. If mate choice really does improve offspring fitness in fruit flies, did the follow-up study being analyzed in parts (a)-(d) make a Type I, Type II, or no error? (f) If mate choice really does not improve offspring fitness in fruit flies, did the original Nature study make a Type I, Type II, or no error?

Approval Rating for Congress In a Gallup poll \(^{51}\) conducted in December 2015 , a random sample of \(n=824\) American adults were asked "Do you approve or disapprove of the way Congress is handling its job?" The proportion who said they approve is \(\hat{p}=0.13,\) and a \(95 \%\) confidence interval for Congressional job approval is 0.107 to 0.153 . If we use a 5\% significance level, what is the conclusion if we are: (a) Testing to see if there is evidence that the job approval rating is different than \(14 \%\). (This happens to be the average sample approval rating from the six months prior to this poll.) (b) Testing to see if there is evidence that the job approval rating is different than \(9 \%\). (This happens to be the lowest sample Congressional approval rating Gallup ever recorded through the time of the poll.)

In Exercise 3.89 on page \(239,\) we found a \(95 \%\) confidence interval for the difference in proportion of rats showing compassion, using the proportion of female rats minus the proportion of male rats, to be 0.104 to \(0.480 .\) In testing whether there is a difference in these two proportions: (a) What are the null and alternative hypotheses? (b) Using the confidence interval, what is the conclusion of the test? Include an indication of the significance level. (c) Based on this study would you say that female rats or male rats are more likely to show compassion (or are the results inconclusive)?

In a test to see whether there is a difference between males and females in average nasal tip angle, the study indicates that " \(p>0.05\)."

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free