Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Ignorance Surveys were conducted in 2013 using random sampling methods in four different countries under the leadership of Hans Rosling, a Swedish statistician and international health advocate. The survey questions were designed to assess the ignorance of the public to global population trends. The survey was not just designed to measure ignorance (no information), but if preconceived notions can lead to more wrong answers than would be expected by random guessing. One question asked, "In the last 20 years the proportion of the world population living in extreme poverty has \(\ldots, "\) and three choices were provided: 1) "almost doubled" 2) "remained more or less the same," and 3) "almost halved." Of 1005 US respondents, just \(5 \%\) gave the correct answer: "almost halved." 34 We would like to test if the percent of correct choices is significantly different than what would be expected if the participants were just randomly guessing between the three choices. (a) What are the null and alternative hypotheses? (b) Using StatKey or other technology, construct a randomization distribution and compute the p-value. (c) State the conclusion in context.

Short Answer

Expert verified
The null and alternative hypotheses are \(H_{0}: p = 0.33\) and \(H_{a}: p ≠ 0.33\) respectively. The p-value can be calculated using a randomization test and statistical software. The conclusion will be based on the comparison of the p-value and a chosen significance level, often \(0.05\), and should be discussed in the context of people's knowledge about worldwide poverty trends.

Step by step solution

01

Formulate null and alternative hypotheses

The null hypothesis (\(H_{0}\)) assumes that respondents are just guessing their answer randomly among three available options. So, the probability of a correct response should be \(1/3\) or approximately \(0.33\). Therefore, \(H_{0}: p = 0.33\). The alternative hypothesis (\(H_{a}\)), on the other hand, suggests that the proportion of correct answers (\(p\)) is significantly different from \(0.33\). Hence, \(H_{a}: p ≠ 0.33\).
02

Conduct a randomization test and calculate the p-value

Randomization tests can be conducted using statistical software. The main idea of the test is to simulate the distribution under the null hypothesis and calculate the proportion of simulated statistics that are as extreme as the observed test statistic. The observed statistic here is \(0.05\) (correct responses). After running the test, the p-value can be obtained.
03

Draw conclusion

After obtaining the p-value, the conclusion can be stated in context. If the p-value is less than the chosen significance level (usually \(0.05\)), then there is enough evidence to reject the null hypothesis in favour of the alternative. However, if the p-value is greater than \(0.05\), then there is not enough evidence to reject the null hypothesis. In either case, the specific p-value and what it implies about the population's knowledge should be referenced in the conclusion.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Flaxseed and Omega-3 Exercise 4.30 on page 271 describes a company that advertises that its milled flaxseed contains, on average, at least \(3800 \mathrm{mg}\) of ALNA, the primary omega-3 fatty acid in flaxseed, per tablespoon. In each case below, which of the standard significance levels, \(1 \%\) or \(5 \%\) or \(10 \%,\) makes the most sense for that situation? (a) The company plans to conduct a test just to double-check that its claim is correct. The company is eager to find evidence that the average amount per tablespoon is greater than 3800 (their alternative hypothesis), and is not really worried about making a mistake. The test is internal to the company and there are unlikely to be any real consequences either way. (b) Suppose, instead, that a consumer organization plans to conduct a test to see if there is evidence against the claim that the product contains at least \(3800 \mathrm{mg}\) per tablespoon. If the organization finds evidence that the advertising claim is false, it will file a lawsuit against the flaxseed company. The organization wants to be very sure that the evidence is strong, since if the company is sued incorrectly, there could be very serious consequences.

In Exercise 4.16 on page 268 , we describe an observational study investigating a possible relationship between exposure to organophosphate pesticides as measured in urinary metabolites (DAP) and diagnosis of ADHD (attention-deficit/hyperactivity disorder). In reporting the results of this study, the authors \(^{28}\) make the following statements: \- "The threshold for statistical significance was set at \(P<.05 . "\) \- "The odds of meeting the \(\ldots\) criteria for \(\mathrm{ADHD}\) increased with the urinary concentrations of total DAP metabolites" \- "The association was statistically significant." (a) What can we conclude about the p-value obtained in analyzing the data? (b) Based on these statements, can we distinguish whether the evidence of association is very strong vs moderately strong? Why or why not? (c) Can we conclude that exposure to pesticides is related to the likelihood of an ADHD diagnosis? (d) Can we conclude that exposure to pesticides causes more cases of ADHD? Why or why not?

Polling 1000 people in a large community to determine if there is evidence for the claim that the percentage of people in the community living in a mobile home is greater then \(10 \%\).

Testing 50 people in a driving simulator to find the average reaction time to hit the brakes when an object is seen in the view ahead.

The consumption of caffeine to benefit alertness is a common activity practiced by \(90 \%\) of adults in North America. Often caffeine is used in order to replace the need for sleep. One study \(^{24}\) compares students' ability to recall memorized information after either the consumption of caffeine or a brief sleep. A random sample of 35 adults (between the ages of 18 and 39 ) were randomly divided into three groups and verbally given a list of 24 words to memorize. During a break, one of the groups takes a nap for an hour and a half, another group is kept awake and then given a caffeine pill an hour prior to testing, and the third group is given a placebo. The response variable of interest is the number of words participants are able to recall following the break. The summary statistics for the three groups are in Table 4.9. We are interested in testing whether there is evidence of a difference in average recall ability between any two of the treatments. Thus we have three possible tests between different pairs of groups: Sleep vs Caffeine, Sleep vs Placebo, and Caffeine vs Placebo. (a) In the test comparing the sleep group to the caffeine group, the p-value is \(0.003 .\) What is the conclusion of the test? In the sample, which group had better recall ability? According to the test results, do you think sleep is really better than caffeine for recall ability? (b) In the test comparing the sleep group to the placebo group, the p-value is 0.06 . What is the conclusion of the test using a \(5 \%\) significance level? If we use a \(10 \%\) significance level? How strong is the evidence of a difference in mean recall ability between these two treatments? (c) In the test comparing the caffeine group to the placebo group, the p-value is 0.22 . What is the conclusion of the test? In the sample, which group had better recall ability? According to the test results, would we be justified in concluding that caffeine impairs recall ability? (d) According to this study, what should you do before an exam that asks you to recall information?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free