Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercise 4.19 on page 269 describes a study investigating the effects of exercise on cognitive function. \({ }^{31}\) Separate groups of mice were exposed to running wheels for \(0,2,4,7,\) or 10 days. Cognitive function was measured by \(Y\) maze performance. The study was testing whether exercise improves brain function, whether exercise reduces levels of BMP (a protein which makes the brain slower and less nimble), and whether exercise increases the levels of noggin (which improves the brain's ability). For each of the results quoted in parts (a), (b), and (c), interpret the information about the p-value in terms of evidence for the effect. (a) "Exercise improved Y-maze performance in most mice by the 7 th day of exposure, with further increases after 10 days for all mice tested \((p<.01)\) (b) "After only two days of running, BMP ... was reduced \(\ldots\) and it remained decreased for all subsequent time-points \((p<.01)\)." (c) "Levels of noggin ... did not change until 4 days, but had increased 1.5 -fold by \(7-10\) days of exercise \((p<.001)\)." (d) Which of the tests appears to show the strongest statistical effect? (e) What (if anything) can we conclude about the effects of exercise on mice?

Short Answer

Expert verified
Exercise appears to improve cognitive function in mice by improving Y-maze performance, reducing levels of BMP, and increasing levels of noggin. The effect on noggin levels, which did not manifest until 4 days into exercise but had increased 1.5-fold by 7-10 days, seems to be the most statistically significant.

Step by step solution

01

Interpretation of Part (a)

In part (a) of the exercise, a p-value of less than .01 indicates strong evidence against the null hypothesis that exercise does not improve Y-maze performance in mice. Consequently, it is very likely that exercise does improve Y-maze performance, particularly after 7 or more days of exposure.
02

Interpretation of Part (b)

In part (b), a p-value of less than .01 again indicates strong evidence against the null hypothesis, in this case that exercise does not reduce levels of BMP. Especially given that this effect was observed after only two days of running and remained for all subsequent time-points, it is very likely that exercise does indeed reduce levels of BMP.
03

Interpretation of Part (c)

In part (c), a p-value of less than .001 provides extremely strong evidence against the null hypothesis that exercise does not increase the levels of noggin. Given that this effect did not change until 4 days but had increased 1.5-fold by 7-10 days of exercise, we can conclude it is highly likely that exercise increases the levels of noggin, but only after a certain time point.
04

Determine the Strongest Statistical Effect

Given that the p-value for the effect on noggin levels was the smallest, part (c) appears to show the strongest statistical effect.
05

Conclusion on the Effects of Exercise on Mice

Given the results from parts (a), (b), and (c), it seems quite likely that exercise improves brain function in mice by boosting Y-maze performance, reducing levels of BMP, and increasing levels of noggin. However, the exact mechanism and timescales for these effects warrant further investigation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

After exercise, massage is often used to relieve pain, and a recent study 33 shows that it also may relieve inflammation and help muscles heal. In the study, 11 male participants who had just strenuously exercised had 10 minutes of massage on one quadricep and no treatment on the other, with treatment randomly assigned. After 2.5 hours, muscle biopsies were taken and production of the inflammatory cytokine interleukin-6 was measured relative to the resting level. The differences (control minus massage) are given in Table 4.11 . $$ \begin{array}{lllllllllll} 0.6 & 4.7 & 3.8 & 0.4 & 1.5 & -1.2 & 2.8 & -0.4 & 1.4 & 3.5 & -2.8 \end{array} $$ (a) Is this an experiment or an observational study? Why is it not double blind? (b) What is the sample mean difference in inflammation between no massage and massage? (c) We want to test to see if the population mean difference \(\mu_{D}\) is greater than zero, meaning muscle with no treatment has more inflammation than muscle that has been massaged. State the null and alternative hypotheses. (d) Use Statkey or other technology to find the p-value from a randomization distribution. (e) Are the results significant at a \(5 \%\) level? At a \(1 \%\) level? State the conclusion of the test if we assume a \(5 \%\) significance level (as the authors of the study did).

Could owning a cat as a child be related to mental illness later in life? Toxoplasmosis is a disease transmitted primarily through contact with cat feces, and has recently been linked with schizophrenia and other mental illnesses. Also, people infected with Toxoplasmosis tend to like cats more and are 2.5 times more likely to get in a car accident, due to delayed reaction times. The CDC estimates that about \(22.5 \%\) of Americans are infected with Toxoplasmosis (most have no symptoms), and this prevalence can be as high as \(95 \%\) in other parts of the world. A study \(^{37}\) randomly selected 262 people registered with the National Alliance for the Mentally Ill (NAMI), almost all of whom had schizophrenia, and for each person selected, chose two people from families without mental illness who were the same age, sex, and socioeconomic status as the person selected from NAMI. Each participant was asked whether or not they owned a cat as a child. The results showed that 136 of the 262 people in the mentally ill group had owned a cat, while 220 of the 522 people in the not mentally ill group had owned a cat. (a) This is known as a case-control study, where cases are selected as people with a specific disease or trait, and controls are chosen to be people without the disease or trait being studied. Both cases and controls are then asked about some variable from their past being studied as a potential risk factor. This is particularly useful for studying rare diseases (such as schizophrenia), because the design ensures a sufficient sample size of people with the disease. Can casecontrol studies such as this be used to infer a causal relationship between the hypothesized risk factor (e.g., cat ownership) and the disease (e.g., schizophrenia)? Why or why not? (b) In case-control studies, controls are usually chosen to be similar to the cases. For example, in this study each control was chosen to be the same age, sex, and socioeconomic status as the corresponding case. Why choose controls who are similar to the cases? (c) For this study, calculate the relevant difference in proportions; proportion of cases (those with schizophrenia) who owned a cat as a child minus proportion of controls (no mental illness) who owned a cat as a child. (d) For testing the hypothesis that the proportion of cat owners is higher in the schizophrenic group than the control group, use technology to generate a randomization distribution and calculate the p-value. (e) Do you think this provides evidence that there is an association between owning a cat as a child and developing schizophrenia? \(^{38}\) Why or why not?

Exercise 4.26 discusses a sample of households in the US. We are interested in determining whether or not there is a linear relationship between household income and number of children. (a) Define the relevant parameter(s) and state the null and alternative hypotheses. (b) Which sample correlation shows more evidence of a relationship, \(r=0.25\) or \(r=0.75 ?\) (c) Which sample correlation shows more evidence of a relationship, \(r=0.50\) or \(r=-0.50 ?\)

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). Using a sample of 10 games each to see if your average score at Wii bowling is significantly more than your friend's average score.

A confidence interval for a sample is given, followed by several hypotheses to test using that sample. In each case, use the confidence interval to give a conclusion of the test (if possible) and also state the significance level you are using. A \(90 \%\) confidence interval for \(p_{1}-p_{2}: 0.07\) to 0.18 (a) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1} \neq p_{2}\) (b) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1}>p_{2}\) (c) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1}

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free