Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Does consuming beer attract mosquitoes? Exercise 4.17 on page 268 discusses an experiment done in Africa testing possible ways to reduce the spread of malaria by mosquitoes. In the experiment, 43 volunteers were randomly assigned to consume either a liter of beer or a liter of water, and the attractiveness to mosquitoes of each volunteer was measured. The experiment was designed to test whether beer consumption increases mosquito attraction. The report \(^{30}\) states that "Beer consumption, as opposed to water consumption, significantly increased the activation \(\ldots\) of \(A n\). gambiae [mosquitoes] ... \((P<0.001)\)." (a) Is this convincing evidence that consuming beer is associated with higher mosquito attraction? Why or why not? (b) How strong is the evidence for the result? Explain. (c) Based on these results, it is reasonable to conclude that consuming beer causes an increase in mosquito attraction? Why or why not?

Short Answer

Expert verified
While the experiment provides strong evidence associating beer consumption with increased mosquito attraction, it does not conclusively prove that beer consumption causes an increase in mosquito attraction.

Step by step solution

01

Interpreting the Evidence

The \(P<0.001\) indicates a significant correlation between consuming beer and attractiveness to mosquitoes. This means that the chance that the observed difference happened by chance is less than 0.1%. Therefore it is highly likely that beer consumption increases mosquito attraction.
02

Strength of the Evidence

The strength of the evidence is determined by the P-value. In this case, \(P<0.001\) is a very strong evidence against the null hypothesis. It indicates that, if there was no difference between beer drinking and mosquito attraction, the probability to observe such a difference as in the experiment is less than 0.1%.
03

Reasonability of Concluding Causation

While statistically significant, we cannot definitely state that beer consumption causes an increase in mosquito attraction just based on this experiment. Correlation does not imply causation. Other variables might be at play that were not accounted for in the experiment. More studies are needed to establish causation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A confidence interval for a sample is given, followed by several hypotheses to test using that sample. In each case, use the confidence interval to give a conclusion of the test (if possible) and also state the significance level you are using. A \(90 \%\) confidence interval for \(p_{1}-p_{2}: 0.07\) to 0.18 (a) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1} \neq p_{2}\) (b) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1}>p_{2}\) (c) \(H_{0}: p_{1}=p_{2}\) vs \(H_{a}: p_{1}

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). A pharmaceutical company is testing to see whether its new drug is significantly better than the existing drug on the market. It is more expensive than the existing drug. Which significance level would the company prefer? Which significance level would the consumer prefer?

We are conducting many hypothesis tests to test a claim. In every case, assume that the null hypothesis is true. Approximately how many of the tests will incorrectly find significance? 100 tests conducted using a significance level of \(5 \%\).

For each situation described, indicate whether it makes more sense to use a relatively large significance level (such as \(\alpha=0.10\) ) or a relatively small significance level (such as \(\alpha=0.01\) ). Testing to see if a well-known company is lying in its advertising. If there is evidence that the company is lying, the Federal Trade Commission will file a lawsuit against them.

In a test to see whether there is a difference between males and females in average nasal tip angle, the study indicates that " \(p>0.05\)."

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free