Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An article noted that it may be possible to accurately predict which way a penalty-shot kicker in soccer will direct his shot. \({ }^{27}\) The study finds that certain types of body language by a soccer player \(-\) called "tells"-can be accurately read to predict whether the ball will go left or right. For a given body movement leading up to the kick, the question is whether there is strong evidence that the proportion of kicks that go right is significantly different from one-half. (a) What are the null and alternative hypotheses in this situation? (b) If sample results for one type of body movement give a p-value of 0.3184 , what is the conclusion of the test? Should a goalie learn to distinguish this movement? (c) If sample results for a different type of body movement give a p-value of \(0.0006,\) what is the conclusion of the test? Should a goalie learn to distinguish this movement?

Short Answer

Expert verified
(a) Null hypothesis (H0): The proportion of kicks going right is not significantly different from 0.5. Alternative hypothesis (H1): The proportion of kicks going right is significantly different from 0.5. (b) With a p-value of 0.3184, we don't have enough evidence to reject H0. Goalkeepers should probably not prioritize learning to distinguish this movement. (c) With a p-value of 0.0006, we reject H0 in favor of H1, and goalkeepers should learn to distinguish this movement.

Step by step solution

01

Set Up Hypotheses

The null hypothesis (H0) in this case would state that the proportion of kicks that go right is not significantly different from 0.5, implying that the chance of the ball going either way is equal, not impacted by the player's body language. The alternative hypothesis (H1) would state that the proportion of kicks going right is significantly different from 0.5, indicating that the player's body language influences the direction of the kick.
02

Interpret P-value for the first body movement

The p-value is a probability that provides a measure of the evidence against the null hypothesis provided by the data. The smaller the p-value, the stronger the evidence against H0. A commonly used threshold to determine the significance is a p-value of 0.05. If p < 0.05, there's strong evidence against H0, and we reject it. If p > 0.05, we do not have enough evidence to reject the H0. With a p-value of 0.3184, which is greater than 0.05, there is insufficient evidence against the null hypothesis. Therefore, the body movement does not provide significant evidence about the direction of the kick.
03

Interpret P-value for the second body movement

With a p-value of 0.0006, which is much less than 0.05, there's significant evidence against the null hypothesis. Therefore, we reject H0 and accept H1: the proportion of kicks that go right, influenced by this particular body movement, is significantly different from 0.5. In this case, the goalkeeper should learn to distinguish this movement because it can help predict the direction of the kick.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give null and alternative hypotheses for a population proportion, as well as sample results. Use StatKey or other technology to generate a randomization distribution and calculate a p-value. StatKey tip: Use "Test for a Single Proportion" and then "Edit Data" to enter the sample information. Hypotheses: \(H_{0}: p=0.5\) vs \(H_{a}: p \neq 0.5\) Sample data: \(\hat{p}=28 / 40=0.70\) with \(n=40\)

The consumption of caffeine to benefit alertness is a common activity practiced by \(90 \%\) of adults in North America. Often caffeine is used in order to replace the need for sleep. One study \(^{24}\) compares students' ability to recall memorized information after either the consumption of caffeine or a brief sleep. A random sample of 35 adults (between the ages of 18 and 39 ) were randomly divided into three groups and verbally given a list of 24 words to memorize. During a break, one of the groups takes a nap for an hour and a half, another group is kept awake and then given a caffeine pill an hour prior to testing, and the third group is given a placebo. The response variable of interest is the number of words participants are able to recall following the break. The summary statistics for the three groups are in Table 4.9. We are interested in testing whether there is evidence of a difference in average recall ability between any two of the treatments. Thus we have three possible tests between different pairs of groups: Sleep vs Caffeine, Sleep vs Placebo, and Caffeine vs Placebo. (a) In the test comparing the sleep group to the caffeine group, the p-value is \(0.003 .\) What is the conclusion of the test? In the sample, which group had better recall ability? According to the test results, do you think sleep is really better than caffeine for recall ability? (b) In the test comparing the sleep group to the placebo group, the p-value is 0.06 . What is the conclusion of the test using a \(5 \%\) significance level? If we use a \(10 \%\) significance level? How strong is the evidence of a difference in mean recall ability between these two treatments? (c) In the test comparing the caffeine group to the placebo group, the p-value is 0.22 . What is the conclusion of the test? In the sample, which group had better recall ability? According to the test results, would we be justified in concluding that caffeine impairs recall ability? (d) According to this study, what should you do before an exam that asks you to recall information?

Describe tests we might conduct based on Data 2.3 , introduced on page \(69 .\) This dataset, stored in ICUAdmissions, contains information about a sample of patients admitted to a hospital Intensive Care Unit (ICU). For each of the research questions below, define any relevant parameters and state the appropriate null and alternative hypotheses. Is the average age of ICU patients at this hospital greater than \(50 ?\)

Interpreting a P-value In each case, indicate whether the statement is a proper interpretation of what a p-value measures. (a) The probability the null hypothesis \(H_{0}\) is true. (b) The probability that the alternative hypothesis \(H_{a}\) is true. (c) The probability of seeing data as extreme as the sample, when the null hypothesis \(H_{0}\) is true. (d) The probability of making a Type I error if the null hypothesis \(H_{0}\) is true. (e) The probability of making a Type II error if the alternative hypothesis \(H_{a}\) is true.

Scientists studying lion attacks on humans in Tanzania \(^{32}\) found that 95 lion attacks happened between \(6 \mathrm{pm}\) and \(10 \mathrm{pm}\) within either five days before a full moon or five days after a full moon. Of these, 71 happened during the five days after the full moon while the other 24 happened during the five days before the full moon. Does this sample of lion attacks provide evidence that attacks are more likely after a full moon? In other words, is there evidence that attacks are not equally split between the two five-day periods? Use StatKey or other technology to find the p-value, and be sure to show all details of the test. (Note that this is a test for a single proportion since the data come from one sample.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free