Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use data from a study designed to examine the effect of doing synchronized movements (such as marching in step or doing synchronized dance steps) and the effect of exertion on many different variables, such as pain tolerance and attitudes toward others. In the study, 264 high school students in Brazil were randomly assigned to one of four groups reflecting whether or not movements were synchronized (Synch= yes or no) and level of activity (Exertion= high or low). \(^{49}\) Participants rated how close they felt to others in their group both before (CloseBefore) and after (CloseAfter) the activity, using a 7-point scale (1=least close to \(7=\) most close ). Participants also had their pain tolerance measured using pressure from a blood pressure cuff, by indicating when the pressure became too uncomfortable (up to a maximum pressure of \(300 \mathrm{mmHg}\) ). Higher numbers for this Pain Tolerance measure indicate higher pain tolerance. The full dataset is available in SynchronizedMovement. For each of the following problems: (a) Give notation for the quantity we are estimating, and define any relevant parameters. (b) Use StatKey or other technology to find the value of the sample statistic. Give the correct notation with your answer. (c) Use StatKey or other technology to find the standard error for the estimate. (d) Use the standard error to give a \(95 \%\) confidence interval for the quantity we are estimating. (e) Interpret the confidence interval in context. Does Synchronization Increase Feelings of Closeness? Use the closeness ratings given after the activity (CloseAfter) to estimate the difference in mean rating of closeness between those who have just done a synchronized activity and those who do a non-synchronized activity.

Short Answer

Expert verified
The difference in the mean rating of closeness, the sample statistic, the standard error, the 95% confidence interval and its interpretation pertaining to the problem context can be obtained using data from the study and the methods of statistical estimation and analysis.

Step by step solution

01

Notation and Parameter Definition

Let's denote the closeness rating given after the synchronized activity as \(M_s\) and after the non-synchronized activity as \(M_n\). The parameter to be estimated is the difference in mean rating of closeness, \(d = M_s - M_n\).
02

Finding the Sample Statistic

One can use a statistical software to calculate the mean closeness rating for both groups: synchronized and non-synchronized. After calculating the means, the difference between the means should be calculated.
03

Calculating the Standard Error

The standard error for the estimate can also be calculated using the statistical software. The standard error (SE) is a measure of the variability in the sample mean.
04

Confidence Interval Calculation

The 95% confidence interval for the difference in mean ratings can be calculated as \(d \pm 1.96*SE\) where 1.96 is the Z value for a 95% confidence level.
05

Interpretation of the Confidence Interval

The confidence interval will give an estimation of where we believe the true difference (in population) lies within a certain level of confidence. If, for example, the confidence interval for the difference does not include zero, that suggests a statistically significant difference between the mean ratings of closeness for the synchronized and non-synchronized groups.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Do You Prefer Pain over Solitude? Exercise 3.58 describes a study in which college students found it unpleasant to sit alone and think. The same article describes a second study in which college students appear to prefer receiving an electric shock to sitting in solitude. The article states that "when asked to spend 15 minutes in solitary thought, 12 of 18 men and 6 of 24 women voluntarily gave themselves at least one electric shock." Use this information to estimate the difference between men and women in the proportion preferring pain over solitude. The standard error of the estimate is 0.154 (a) Give notation for the quantity being estimated, and define any parameters used. (b) Give notation for the quantity that gives the best estimate, and give its value. (c) Give a \(95 \%\) confidence interval for the quantity being estimated. (d) Is "no difference" between males and females a plausible value for the difference in proportions?

Better Traffic Flow Exercise 2.155 on page 105 introduces the dataset TrafficFlow, which gives delay time in seconds for 24 simulation runs in Dresden, Germany, comparing the current timed traffic light system on each run to a proposed flexible traffic light system in which lights communicate traffic flow information to neighboring lights. On average, public transportation was delayed 105 seconds under the timed system and 44 seconds under the flexible system. Since this is a matched pairs experiment, we are interested in the difference in times between the two methods for each of the 24 simulations. For the \(n=24\) differences \(D\), we saw in Exercise 2.155 that \(\bar{x}_{D}=61\) seconds with \(s_{D}=15.19\) seconds. We wish to estimate the average time savings for public transportation on this stretch of road if the city of Dresden moves to the new system. (a) What parameter are we estimating? Give correct notation. (b) Suppose that we write the 24 differences on 24 slips of paper. Describe how to physically use the paper slips to create a bootstrap sample. (c) What statistic do we record for this one bootstrap sample? (d) If we create a bootstrap distribution using many of these bootstrap statistics, what shape do we expect it to have and where do we expect it to be centered? (e) How can we use the values in the bootstrap distribution to find the standard error? (f) The standard error is 3.1 for one set of 10,000 bootstrap samples. Find and interpret a \(95 \%\) confidence interval for the average time savings.

Average Penalty Minutes in the NHL In Exercise 3.102 on page \(241,\) we construct a \(95 \%\) confidence interval for mean penalty minutes given to NHL players in a season using data from players on the Ottawa Senators as our sample. Some percentiles from a bootstrap distribution of 5000 sample means are shown in Table 3.13. Use this information to find and interpret a \(98 \%\) confidence interval for the mean penalty minutes of NHL players. Assume that the players on this team are a reasonable sample from the population of all players.

Give the correct notation for the quantity described and give its value. Proportion of US adults who own a cell phone. In a survey of 1006 US adults in \(2014,90 \%\) said they had a cell phone. \(^{7}\)

Gender in the Rock and Roll Hall of Fame From its founding through \(2015,\) the Rock and Roll Hall of Fame has inducted 303 groups or individuals. Forty-seven of the inductees have been female or have included female members. \(^{20}\) The full dataset is available in RockandRoll. (a) What proportion of inductees have been female or have included female members? Use the correct notation with your answer. (b) If we took many samples of size 50 from the population of all inductees and recorded the proportion female or with female members for each sample, what shape do we expect the distribution of sample proportions to have? Where do we expect it to be centered?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free