Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 3.96 to 3.101 use data from a study designed to examine the effect of doing synchronized movements (such as marching in step or doing synchronized dance steps) and the effect of exertion on many different variables, such as pain tolerance and attitudes toward others. In the study, 264 high school students in Brazil were randomly assigned to one of four groups reflecting whether or not movements were synchronized (Synch= yes or no) and level of activity (Exertion= high or low). \(^{49}\) Participants rated how close they felt to others in their group both before (CloseBefore) and after (CloseAfter) the activity, using a 7-point scale (1=least close to \(7=\) most close ). Participants also had their pain tolerance measured using pressure from a blood pressure cuff, by indicating when the pressure became too uncomfortable (up to a maximum pressure of \(300 \mathrm{mmHg}\) ). Higher numbers for this Pain Tolerance measure indicate higher pain tolerance. The full dataset is available in SynchronizedMovement. For each of the following problems: (a) Give notation for the quantity we are estimating, and define any relevant parameters. (b) Use StatKey or other technology to find the value of the sample statistic. Give the correct notation with your answer. (c) Use StatKey or other technology to find the standard error for the estimate. (d) Use the standard error to give a \(95 \%\) confidence interval for the quantity we are estimating. (e) Interpret the confidence interval in context. How Close Do You Feel to Others? Use the closeness ratings before the activity (CloseBefore) to estimate the mean closeness rating one person would assign to others in a group.

Short Answer

Expert verified
The quantity we are estimating, denoted by \( µ_{CB} \), is the mean closeness rating a person would assign to others in a group before the activity. The value of the sample statistic (sample mean) and the standard error can be calculated using the statistical software. A 95% confidence interval for this quantity is calculated using the sample mean and standard error. The interpretation of the confidence interval is that we can be 95% confident that the true mean closeness rating falls within this interval.

Step by step solution

01

Identifying the Quantity and Parameters

We are trying to estimate the mean closeness rating that a person would assign to others in a group before doing synchronized movement or any activity. Thus, we denote the quantity we are estimating as \( µ_{CB} \), where 'CB' represents 'CloseBefore' referring to the closeness measure before the activity. 'µ' represents the mean value we are trying to estimate.
02

Finding the Value of Sample Statistic

Using the given dataset in the statistical software (like StatKey), we need to find the mean value of the 'CloseBefore' ratings. It gives us the sample mean which is represented as \( \bar{x}_{CB} \). This is our sample statistic.
03

Calculating Standard Error for the Estimate

The standard error for the estimate can be calculated using the software too. It can be done by finding the standard deviation of the 'CloseBefore' ratings and dividing it by the square root of the number of observations. This value represents the standard error (SE) and it measures the accuracy of our estimate.
04

Constructing a Confidence Interval

A 95% confidence interval for the quantity we are estimating can be calculated using the formula: \[ \bar{x}_{CB} \pm 1.96 * SE \] where \( \bar{x}_{CB} \) is the sample mean, SE is the standard error, 1.96 is the z-score for a 95% confidence interval. This interval gives us a range in which we can be 95% confident that the true population mean falls in.
05

Interpretation of Confidence Interval

The interpretation of the confidence interval is in the context of the problem. It means that we can be 95% confident that the true mean closeness rating that one person would assign to others in a group before activity falls within the calculated interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Standard Deviation of NHL Penalty Minutes Exercise 3.102 describes data on the number of penalty minutes for Ottawa Senators NHL players. The sample has a fairly large standard deviation, \(s=27.3\) minutes. Use StatKey or other technology to create a bootstrap distribution, estimate the standard error, and give a \(95 \%\) confidence interval for the standard deviation of penalty minutes for NHL players. Assume that the data in OttawaSenators can be viewed as a reasonable sample of all NHL players.

Do You Find Solitude Distressing? "For many people, being left alone with their thoughts is a most undesirable activity," says a psychologist involved in a study examining reactions to solitude. \({ }^{26}\) In the study, 146 college students were asked to hand over their cell phones and sit alone, thinking, for about 10 minutes. Afterward, 76 of the participants rated the experience as unpleasant. Use this information to estimate the proportion of all college students who would find it unpleasant to sit alone with their thoughts. (This reaction is not limited to college students: in a follow-up study involving adults ages 18 to 77 , a similar outcome was reported.) (a) Give notation for the quantity being estimated, and define any parameters used. (b) Give notation for the quantity that gives the best estimate, and give its value. (c) Give a \(95 \%\) confidence interval for the quantity being estimated, given that the margin of error for the estimate is \(8 \%\).

Exercises 3.71 to 3.73 consider the question (using fish) of whether uncommitted members of a group make it more democratic. It has been argued that individuals with weak preferences are particularly vulnerable to a vocal opinionated minority. However, recent studies, including computer simulations, observational studies with humans, and experiments with fish, all suggest that adding uncommitted members to a group might make for more democratic decisions by taking control away from an opinionated minority. \({ }^{36}\) In the experiment with fish, golden shiners (small freshwater fish who have a very strong tendency to stick together in schools) were trained to swim toward either yellow or blue marks to receive a treat. Those swimming toward the yellow mark were trained more to develop stronger preferences and became the fish version of individuals with strong opinions. When a minority of five opinionated fish (wanting to aim for the yellow mark) were mixed with a majority of six less opinionated fish (wanting to aim for the blue mark), the group swam toward the minority yellow mark almost all the time. When some untrained fish with no prior preferences were added, however, the majority opinion prevailed most of the time. \({ }^{37}\) Exercises 3.71 to 3.73 elaborate on this study. How Often Does the Fish Majority Win? In a school of fish with a minority of strongly opinionated fish wanting to aim for the yellow mark and a majority of less passionate fish wanting to aim for the blue mark, as described under Fish Democracies above, a \(95 \%\) confidence interval for the proportion of times the majority wins (they go to the blue mark) is 0.09 to \(0.26 .\) Interpret this confidence interval. Is it plausible that fish in this situation are equally likely to go for either of the two options?

Bisphenol A in Your Soup Cans Bisphenol A (BPA) is in the lining of most canned goods, and recent studies have shown a positive association between BPA exposure and behavior and health problems. How much does canned soup consumption increase urinary BPA concentration? That was the question addressed in a recent study \(^{34}\) in which consumption of canned soup over five days was associated with a more than \(1000 \%\) increase in urinary BPA. In the study, 75 participants ate either canned soup or fresh soup for lunch for five days. On the fifth day, urinary BPA levels were measured. After a two-day break, the participants switched groups and repeated the process. The difference in BPA levels between the two treatments was measured for each participant. The study reports that a \(95 \%\) confidence interval for the difference in means (canned minus fresh) is 19.6 to \(25.5 \mu \mathrm{g} / \mathrm{L}\). (a) Is this a randomized comparative experiment or a matched pairs experiment? Why might this type of experiment have been used? (b) What parameter are we estimating? (c) Interpret the confidence interval in terms of BPA concentrations. (d) If the study had included 500 participants instead of \(75,\) would you expect the confidence interval to be wider or narrower?

Is a Car a Necessity? A random sample of \(n=1483\) adults in the US were asked whether they consider a car a necessity or a luxury, \({ }^{31}\) and we find that a \(95 \%\) confidence interval for the proportion saying that it is a necessity is 0.83 to \(0.89 .\) Explain the meaning of this confidence interval in the appropriate context.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free