Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Moose Drool Makes Grass More Appetizing Different species can interact in interesting ways. One type of grass produces the toxin ergovaline at levels about 1.0 part per million in order to keep grazing animals away. However, a recent study \(^{27}\) has found that the saliva from a moose counteracts these toxins and makes the grass more appetizing (for the moose). Scientists estimate that, after treatment with moose drool, mean level of the toxin ergovaline (in ppm) on the grass is \(0.183 .\) The standard error for this estimate is 0.016 . (a) Give notation for the quantity being estimated, and define any parameters used. (b) Give notation for the quantity that gives the best estimate, and give its value. (c) Give a \(95 \%\) confidence interval for the quantity being estimated. Interpret the interval in context.

Short Answer

Expert verified
The parameter being estimated, indicated as \(\mu\), is the mean level of the toxin in the grass after being treated with moose drool. The best estimate of this parameter is given by the sample mean, denoted as \(\bar{x}\), which was found to be 0.183 ppm. The 95% confidence interval for the mean level of toxin was calculated to be between 0.152 and 0.214 ppm.

Step by step solution

01

Identify and Define Parameters

The parameter being estimated is the mean level of the toxin ergovaline in the grass after being treated with moose drool. In statistical notation, this parameter is usually denoted as \(\mu\).
02

Distinguish the Best Estimate

The quantity that provides the best estimate in this instance is the sample mean (denoted as \(\bar{x}\)). After the scientists' study, they were able to estimate the mean level of the toxin to be 0.183 ppm.
03

Calculate a 95% Confidence Interval

The confidence interval can be calculated using the following formula: \[\text{CI} = \(\bar{x}\) \pm Z*\frac{\(SE\)}{\sqrt{n}}\] Where CI designates the confidence interval, Z denotes the Z score (1.96 for a 95% confidence interval), SE represents standard error and n is the sample size. In this problem, we are only given \(\bar{x}\) (0.183) and SE (0.016), without the sample size; the formula simplifies to \[\text{CI} = 0.183 \pm 1.96*(0.016)\]
04

Compute & Interpret the Confidence Interval

After calculating the above, we get the Confidence Interval between 0.152 and 0.214. This means that we are 95% confident that the true mean level of toxin in the grass treated with moose drool is between 0.152 and 0.214 ppm. This interpretation of the interval reflects the uncertainty of our estimate due to using a sample instead of having data from all grazing situations.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Student Misinterpretations Suppose that a student is working on a statistics project using data on pulse rates collected from a random sample of 100 students from her college. She finds a \(95 \%\) confidence interval for mean pulse rate to be (65.5,71.8) . Discuss how each of the statements below would indicate an improper interpretation of this interval. (a) I am \(95 \%\) sure that all students will have pulse rates between 65.5 and 71.8 beats per minute. (b) I am \(95 \%\) sure that the mean pulse rate for this sample of students will fall between 65.5 and 71.8 beats per minute. (c) I am 95\% sure that the confidence interval for the average pulse rate of all students at this college goes from 65.5 to 71.8 beats per minute. (d) I am sure that \(95 \%\) of all students at this college will have pulse rates between 65.5 and 71.8 beats per minute. (e) I am \(95 \%\) sure that the mean pulse rate for all US college students is between 65.5 and 71.8 beats per minute. (f) Of the mean pulse rates for students at this college, \(95 \%\) will fall between 65.5 and 71.8 beats per minute. (g) Of random samples of this size taken from students at this college, \(95 \%\) will have mean pulse rates between 65.5 and 71.8 beats per minute.

To create a confidence interval from a bootstrap distribution using percentiles, we keep the middle values and chop off some number of the lowest values and the highest values. If our bootstrap distribution contains values for 1000 bootstrap samples, indicate how many we chop off at each end for each confidence level given. (a) \(95 \%\) (b) \(90 \%\) (c) \(98 \%\) (d) \(99 \%\)

Give information about the proportion of a sample that agrees with a certain statement. Use StatKey or other technology to estimate the standard error from a bootstrap distribution generated from the sample. Then use the standard error to give a \(95 \%\) confidence interval for the proportion of the population to agree with the statement. StatKey tip: Use "CI for Single Proportion" and then "Edit Data" to enter the sample information. In a random sample of 400 people, 112 agree and 288 disagree.

Effect of Overeating for One Month: Correlation between Short-Term and Long- Term Weight Gain In Exercise 3.70 on page \(227,\) we describe a study in which participants ate significantly more and exercised significantly less for a month. Two and a half years later, participants weighed an average of 6.8 pounds more than at the start of the experiment (while the weights of a control group had not changed). Is the amount of weight gained over the following 2.5 years directly related to how much weight was gained during the one-month period? For the 18 participants, the correlation between increase of body weight during the one-month intervention and increase of body weight after 30 months is \(r=0.21 .\) We want to estimate, for the population of all adults, the correlation between weight gain over one month of bingeing and the effect of that month on a person's weight 2.5 years later. (a) What is the population parameter of interest? What is the best estimate for that parameter? (b) To find the sample correlation \(r=0.21,\) we used a dataset containing 18 ordered pairs (weight gain over the one month and weight gain 2.5 years later for each individual in the study). Describe how to use this data to obtain one bootstrap sample. (c) What statistic is recorded for the bootstrap sample? (d) Suppose that we use technology to calculate the relevant statistic for 1000 bootstrap samples. Describe how to find the standard error using those bootstrap statistics. (e) The standard error for one set of bootstrap statistics is 0.14. Calculate a \(95 \%\) confidence interval for the correlation. (f) Use the confidence interval from part (e) to indicate whether you are confident that there is a positive correlation between amount of weight gain during the one-month intervention and amount of weight gained over the next 2.5 years, or whether it is plausible that there is no correlation at all. Explain your reasoning. (g) Will a \(90 \%\) confidence interval most likely be wider or narrower than the \(95 \%\) confidence interval found in part (e)?

SKILL BUILDER 1 In Exercises 3.41 to \(3.44,\) data from a sample is being used to estimate something about a population. In each case: (a) Give notation for the quantity that is being estimated. (b) Give notation for the quantity that gives the best estimate. Random samples of organic eggs and eggs that are not organic are used to estimate the difference in mean protein level between the two types of eggs.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free