Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3.51 to 3.56 , information about a sample is given. Assuming that the sampling distribution is symmetric and bell-shaped, use the information to give a \(95 \%\) confidence interval, and indicate the parameter being estimated. \(\bar{x}_{1}-\bar{x}_{2}=3.0\) and the margin of error for \(95 \%\) confidence is 1.2

Short Answer

Expert verified
The 95% confidence interval for the difference between the population means is \((1.8, 4.2)\). This interval is estimating the true difference of the population means.

Step by step solution

01

Identify given values

In this problem, we are given the difference between two sample means, \(\bar{x}_{1}-\bar{x}_{2}=3.0\) and the margin of error for 95% confidence is 1.2.
02

Understand the concept of confidence interval

A confidence interval is a range of values, derived from a given set of data or from a probability distribution, that is likely to contain an estimated parameter. The width of the interval gives us some idea about the uncertainty of the estimated parameter. In this problem, we are to find a 95% confidence interval, which means that we can be 95% confident that this interval contains the true difference of the population means.
03

Calculate the lower and upper limits of the confidence interval

To calculate the confidence interval, we need to use the given difference between the sample means and the margin of error. The lower limit of the confidence interval can be calculated by subtracting the margin of error from the difference of the sample means, i.e., \(\bar{x}_{1}-\bar{x}_{2} - E = 3.0 - 1.2 = 1.8\). Similarly, the upper limit of the confidence interval can be calculated by adding the margin of error to the difference of the sample means, i.e., \(\bar{x}_{1}-\bar{x}_{2} + E = 3.0 + 1.2 = 4.2\). Therefore, the 95% confidence interval for the difference between the population means is \((1.8, 4.2)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 3.112 to 3.115 give information about the proportion of a sample that agree with a certain statement. Use StatKey or other technology to find a confidence interval at the given confidence level for the proportion of the population to agree, using percentiles from a bootstrap distribution. StatKey tip: Use "CI for Single Proportion" and then "Edit Data" to enter the sample information. Find a \(95 \%\) confidence interval if 180 agree in a random sample of 250 people.

Give information about the proportion of a sample that agrees with a certain statement. Use StatKey or other technology to estimate the standard error from a bootstrap distribution generated from the sample. Then use the standard error to give a \(95 \%\) confidence interval for the proportion of the population to agree with the statement. StatKey tip: Use "CI for Single Proportion" and then "Edit Data" to enter the sample information. In a random sample of 400 people, 112 agree and 288 disagree.

Use data from a study designed to examine the effect of doing synchronized movements (such as marching in step or doing synchronized dance steps) and the effect of exertion on many different variables, such as pain tolerance and attitudes toward others. In the study, 264 high school students in Brazil were randomly assigned to one of four groups reflecting whether or not movements were synchronized (Synch= yes or no) and level of activity (Exertion= high or low). \(^{49}\) Participants rated how close they felt to others in their group both before (CloseBefore) and after (CloseAfter) the activity, using a 7-point scale (1=least close to \(7=\) most close ). Participants also had their pain tolerance measured using pressure from a blood pressure cuff, by indicating when the pressure became too uncomfortable (up to a maximum pressure of \(300 \mathrm{mmHg}\) ). Higher numbers for this Pain Tolerance measure indicate higher pain tolerance. The full dataset is available in SynchronizedMovement. For each of the following problems: (a) Give notation for the quantity we are estimating, and define any relevant parameters. (b) Use StatKey or other technology to find the value of the sample statistic. Give the correct notation with your answer. (c) Use StatKey or other technology to find the standard error for the estimate. (d) Use the standard error to give a \(95 \%\) confidence interval for the quantity we are estimating. (e) Interpret the confidence interval in context. What Proportion Go to Maximum Pressure? We see that 75 of the 264 people in the study allowed the pressure to reach its maximum level of \(300 \mathrm{mmHg}\), without ever saying that the pain was too much (MaxPressure=yes). Use this information to estimate the proportion of people who would allow the pressure to reach its maximum level.

Average Salary of NFL Players The dataset NFLContracts2015 contains the yearly salary (in millions of dollars) from the contracts of all players on a National Football League (NFL) roster at the start of the 2015 season. \({ }^{19}\) (a) Use StatKey or other technology to select a random sample of 5 NFL contract YearlySalary values. Indicate which players you've selected and compute the sample mean. (b) Repeat part (a) by taking a second sample of 5 values, again indicating which players you selected and computing the sample mean. (c) Find the mean for the entire population of players. Include notation for this mean. Comment on the accuracy of using the sample means found in parts (a) and (b) to estimate the population mean.

Adolescent Brains Are Different Researchers continue to find evidence that brains of adolescents behave quite differently than either brains of adults or brains of children. In particular, adolescents seem to hold on more strongly to fear associations than either children or adults, suggesting that frightening connections made during the teen years are particularly hard to unlearn. In one study, \({ }^{25}\) participants first learned to associate fear with a particular sound. In the second part of the study, participants heard the sound without the fear-causing mechanism, and their ability to "unlearn" the connection was measured. A physiological measure of fear was used, and larger numbers indicate less fear. We are estimating the difference in mean response between adults and teenagers. The mean response for adults in the study was 0.225 and the mean response for teenagers in the study was \(0.059 .\) We are told that the standard error of the estimate is 0.091 . (a) Give notation for the quantity being estimated. (b) Give notation for the quantity that gives the best estimate, and give its value. (c) Give a \(95 \%\) confidence interval for the quantity being estimated. (d) Is this an experiment or an observational study?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free