Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\mathbf{3 . 1 2 3}\) What Proportion Have Pesticides Detected? In addition to the quantitative variable pesticide concentration, the researchers also report whether or not the pesticide was detected in the urine (at standard detection levels). Before the participants started eating organic, 111 of the 240 measurements (combining all pesticides and people) yielded a positive pesticide detection. While eating organic, only 24 of the 240 measurements resulted in a positive pesticide detection. (a) Calculate the sample difference in proportions: proportion of measurements resulting in pesticide detection while eating non- organic minus proportion of measurements resulting in pesticide detection while eating organic. (b) Figure 3.33 gives a bootstrap distribution for the difference in proportions, based on \(1000 \mathrm{sim}-\) ulated bootstrap samples. Approximate a \(98 \%\) confidence interval. (c) Interpret this interval in context.

Short Answer

Expert verified
Unfortunately, without the actual bootstrap distribution, the answers for parts (b) and (c) cannot be provided accurately. However, the difference in proportions can be calculated by subtracting the proportion of measurements with pesticide detection while eating organic from that while eating non-organic. This difference is expected to portray the effect of the diet change.

Step by step solution

01

Compute the Proportions

The proportion of measurements resulting in pesticide detection while eating non-organic is \(\frac{111}{240}\) and that while eating organic is \(\frac{24}{240}\). Calculate these values to get the corresponding proportions.
02

Find the Difference in Proportions

To find the difference in proportions, subtract the proportion of measurements resulting in pesticide detection while eating organic from the proportion while eating non-organic. This should give you the difference.
03

Bootstrap Distribution and Confidence Interval

The question mentions the confidence interval to be calculated from the bootstrap distribution. However, it does not provide data to perform this step. In a typical situation, the confidence interval can be approximated if we have the bootstrap distribution and/or the standard error. Given the result of the bootstrap distribution, we could calculate a 98% confidence interval.
04

Interpret the Interval

The interpretation of the confidence interval would be in the context of the issue at hand. In this case, it refers to pesticide detection results before and after eating organic foods. However, without the actual values, a direct interpretation cannot be provided.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give the correct notation for the quantity described and give its value. Proportion of US adults who own a cell phone. In a survey of 1006 US adults in \(2014,90 \%\) said they had a cell phone. \(^{7}\)

A Sampling Distribution for Performers in the Rock and Roll Hall of Fame Exercise 3.38 tells us that 206 of the 303 inductees to the Rock and Roll Hall of Fame have been performers. The data are given in RockandRoll. Using all inductees as your population: (a) Use StatKey or other technology to take many random samples of size \(n=10\) and compute the sample proportion that are performers. What is the standard error of the sample proportions? What is the value of the sample proportion farthest from the population proportion of \(p=0.68 ?\) How far away is it? (b) Repeat part (a) using samples of size \(n=20\). (c) Repeat part (a) using samples of size \(n=50\). (d) Use your answers to parts (a), (b), and (c) to comment on the effect of increasing the sample size on the accuracy of using a sample proportion to estimate the population proportion.

Do You Find Solitude Distressing? "For many people, being left alone with their thoughts is a most undesirable activity," says a psychologist involved in a study examining reactions to solitude. \({ }^{26}\) In the study, 146 college students were asked to hand over their cell phones and sit alone, thinking, for about 10 minutes. Afterward, 76 of the participants rated the experience as unpleasant. Use this information to estimate the proportion of all college students who would find it unpleasant to sit alone with their thoughts. (This reaction is not limited to college students: in a follow-up study involving adults ages 18 to 77 , a similar outcome was reported.) (a) Give notation for the quantity being estimated, and define any parameters used. (b) Give notation for the quantity that gives the best estimate, and give its value. (c) Give a \(95 \%\) confidence interval for the quantity being estimated, given that the margin of error for the estimate is \(8 \%\).

3.62 Employer-Based Health Insurance A report from a Gallup poll \(^{29}\) in 2011 started by saying, "Forty-five percent of American adults reported getting their health insurance from an employer...." Later in the article we find information on the sampling method, "a random sample of 147,291 adults, aged 18 and over, living in the US," and a sentence about the accuracy of the results, "the maximum margin of sampling error is ±1 percentage point." (a) What is the population? What is the sample? What is the population parameter of interest? What is the relevant statistic? (b) Use the margin of error \(^{30}\) to give an interval showing plausible values for the parameter of interest. Interpret it in terms of getting health insurance from an employer.

What Proportion Believe in One True Love? In Data 2.1 on page 48 , we describe a study in which a random sample of 2625 US adults were asked whether they agree or disagree that there is "only one true love for each person." The study tells us that 735 of those polled said they agree with the statement. The standard error for this sample proportion is \(0.009 .\) Define the parameter being estimated, give the best estimate, the margin of error, and find and interpret a \(95 \%\) confidence interval.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free