Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Many Europeans Don't Recognize Signs of Stroke or Heart Attack Across nine European countries in a large-scale survey, people had a hard time identifying signs of a stroke or heart attack. The survey \(^{51}\) included 10,228 inhabitants of Austria, France, Germany, Italy, the Netherlands, Poland, Russia, Spain, and the United Kingdom. Participants ages ranged from 14 to 98 . Of those surveyed, less than half (4910) linked arm or shoulder pain to heart attacks. Use StatKey to find and interpret a \(99 \%\) confidence interval for the proportion of Europeans (from these nine countries) who can identify arm or shoulder pain as a symptom of a heart attack. Can we be \(99 \%\) confident that the proportion is less than half?

Short Answer

Expert verified
The solution requires you to calculate the 99% confidence interval using the given data and then interpret the results to determine if we can be 99% confident that the proportion of Europeans who are able to identify arm or shoulder pain as a symptom of heart attack is less than half. Depending on the result of the confidence interval calculation, the confidence in the portion being less than half will be affirmed or refuted.

Step by step solution

01

Formulating the Problem

From the given exercise, it is understood that out of a total population of 10,228 people, 4910 individuals were able to recognize arm or shoulder pain as a symptom of a heart attack. Now, the task is to calculate the 99% confidence interval for this proportion.
02

Calculating the Point Estimate

The point estimate for the population proportion (p̂) can be calculated using the formula p̂ = x/n, where x represents the number of 'successes' and n is the total number of observations. In this case, p̂ = 4910/10228 = 0.4798 approximately.
03

Calculating the 99% Confidence Interval

The formula for a confidence interval is given as: \[\hat{p} \pm Z* \sqrt{ \frac{\hat{p}(1-\hat{p})}{n}}\] Where Z is the z-score (For a 99% confidence interval, the z-score is 2.576). Plugging the values into this formula provides the 99% confidence interval: 0.4798 \pm 2.576*sqrt((0.4798)(0.5202)/10228).
04

Interpretation of the 99% Confidence Interval

Calculate the range by using the previous formula. If the resulting range is less than 0.5, we can be 99% confident that the proportion of Europeans who can identify arm pain as a symptom is less than half.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use data from a study designed to examine the effect of doing synchronized movements (such as marching in step or doing synchronized dance steps) and the effect of exertion on many different variables, such as pain tolerance and attitudes toward others. In the study, 264 high school students in Brazil were randomly assigned to one of four groups reflecting whether or not movements were synchronized (Synch= yes or no) and level of activity (Exertion= high or low). \(^{49}\) Participants rated how close they felt to others in their group both before (CloseBefore) and after (CloseAfter) the activity, using a 7-point scale (1=least close to \(7=\) most close ). Participants also had their pain tolerance measured using pressure from a blood pressure cuff, by indicating when the pressure became too uncomfortable (up to a maximum pressure of \(300 \mathrm{mmHg}\) ). Higher numbers for this Pain Tolerance measure indicate higher pain tolerance. The full dataset is available in SynchronizedMovement. For each of the following problems: (a) Give notation for the quantity we are estimating, and define any relevant parameters. (b) Use StatKey or other technology to find the value of the sample statistic. Give the correct notation with your answer. (c) Use StatKey or other technology to find the standard error for the estimate. (d) Use the standard error to give a \(95 \%\) confidence interval for the quantity we are estimating. (e) Interpret the confidence interval in context. Does Synchronization Increase Feelings of Closeness? Use the closeness ratings given after the activity (CloseAfter) to estimate the difference in mean rating of closeness between those who have just done a synchronized activity and those who do a non-synchronized activity.

Exercises 3.112 to 3.115 give information about the proportion of a sample that agree with a certain statement. Use StatKey or other technology to find a confidence interval at the given confidence level for the proportion of the population to agree, using percentiles from a bootstrap distribution. StatKey tip: Use "CI for Single Proportion" and then "Edit Data" to enter the sample information. Find a \(95 \%\) confidence interval if 35 agree in a random sample of 100 people.

Do You Prefer Pain over Solitude? Exercise 3.58 describes a study in which college students found it unpleasant to sit alone and think. The same article describes a second study in which college students appear to prefer receiving an electric shock to sitting in solitude. The article states that "when asked to spend 15 minutes in solitary thought, 12 of 18 men and 6 of 24 women voluntarily gave themselves at least one electric shock." Use this information to estimate the difference between men and women in the proportion preferring pain over solitude. The standard error of the estimate is 0.154 (a) Give notation for the quantity being estimated, and define any parameters used. (b) Give notation for the quantity that gives the best estimate, and give its value. (c) Give a \(95 \%\) confidence interval for the quantity being estimated. (d) Is "no difference" between males and females a plausible value for the difference in proportions?

In Exercises 3.51 to 3.56 , information about a sample is given. Assuming that the sampling distribution is symmetric and bell-shaped, use the information to give a \(95 \%\) confidence interval, and indicate the parameter being estimated. $$ \bar{x}=55 \text { and the standard error is } 1.5 . $$

Socially Conscious Consumers In March 2015, a Nielsen global online survey "found that consumers are increasingly willing to pay more for socially responsible products."11 Over 30,000 people in 60 countries were polled about their purchasing habits, and \(66 \%\) of respondents said that they were willing to pay more for products and services from companies who are committed to positive social and environmental impact. We are interested in estimating the proportion of all consumers willing to pay more. Give notation for the quantity we are estimating, notation for the quantity we are using to make the estimate, and the value of the best estimate. Be sure to clearly define any parameters in the context of this situation.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free