Chapter 2: Problem 60
Give the correct notation for the mean. The average number of television sets owned per household for all households in the US is 2.6 .
Chapter 2: Problem 60
Give the correct notation for the mean. The average number of television sets owned per household for all households in the US is 2.6 .
All the tools & learning materials you need for study success - in one app.
Get started for freeDoes It Pay to Get a College Degree? In Exercise 2.21 on page \(58,\) we saw that those with a college degree were much more likely to be employed. The same article also gives statistics on earnings in the US in 2009 by education level. The median weekly earnings for high school graduates with no college degree was \(\$ 626,\) while the median weekly earnings for college graduates with a bachelor's degree was \(\$ 1025 .\) Give correct notation for and find the difference in medians, using the notation for a median, subscripts to identify the two groups, and a minus sign.
Rough Rule of Thumb for the Standard Deviation According to the \(95 \%\) rule, the largest value in a sample from a distribution that is approximately symmetric and bell-shaped should be between 2 and 3 standard deviations above the mean, while the smallest value should be between 2 and 3 standard
Using the data in the StudentSurvey dataset, we use technology to find that a regression line to predict weight (in pounds) from height (in inches) is \(\widehat{\text { Weigh }} t=-170+4.82(\) Height \()\) (a) What weight does the line predict for a person who is 5 feet tall ( 60 inches)? What weight is predicted for someone 6 feet tall ( 72 inches)? (b) What is the slope of the line? Interpret it in context. (c) What is the intercept of the line? If it is reasonable to do so, interpret it in context. If it is not reasonable, explain why not. (d) What weight does the regression line predict for a baby who is 20 inches long? Why is it not appropriate to use the regression line in this case?
Draw any scatterplot satisfying the following conditions: (a) \(n=10\) and \(r=1\) (b) \(n=8\) and \(r=-1\) (c) \(n=5\) and \(r=0\)
Making Friends Online A survey conducted in March 2015 asked 1060 teens to estimate, on average, the number of friends they had made online. While \(43 \%\) had not made any friends online, a small number of the teens had made many friends online. (a) Do you expect the distribution of number of friends made online to be symmetric, skewed to the right, or skewed to the left? (b) Two measures of center for this distribution are 1 friend and 5.3 friends. \({ }^{31}\) Which is most likely to be the mean and which is most likely to be the median? Explain your reasoning.
What do you think about this solution?
We value your feedback to improve our textbook solutions.