Chapter 2: Problem 50
Draw any dotplot to show a dataset that is Clearly skewed to the left.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 50
Draw any dotplot to show a dataset that is Clearly skewed to the left.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Example 2.43 on page 127 , we used the approval rating of a president running for re-election to predict the margin of victory or defeat in the election. We saw that the least squares line is \(\widehat{\text { Margin }}=-36.76+0.839\) ( Approval). Interpret the slope and the intercept of the line in context.
Give the correct notation for the mean. The average number of television sets owned per household for all households in the US is 2.6 .
Two variables are defined, a regression equation is given, and one data point is given. (a) Find the predicted value for the data point and compute the residual. (b) Interpret the slope in context. (c) Interpret the intercept in context, and if the intercept makes no sense in this context, explain why. \(B A C=\) blood alcohol content (\% of alcohol in the blood), Drinks \(=\) number of alcoholic drinks. \(\widehat{B A C}=-0.0127+0.018(\) Drinks \() ;\) data point is an individual who consumed 3 drinks and had a \(B A C\) of 0.08.
Levels of carbon dioxide \(\left(\mathrm{CO}_{2}\right)\) in the atmosphere are rising rapidly, far above any levels ever before recorded. Levels were around 278 parts per million in 1800 , before the Industrial Age, and had never, in the hundreds of thousands of years before that, gone above 300 ppm. Levels are now over 400 ppm. Table 2.31 shows the rapid rise of \(\mathrm{CO}_{2}\) concentrations over the 50 years from \(1960-2010\), also available in CarbonDioxide. \(^{73}\) We can use this information to predict \(\mathrm{CO}_{2}\) levels in different years. (a) What is the explanatory variable? What is the response variable? (b) Draw a scatterplot of the data. Does there appear to be a linear relationship in the data? (c) Use technology to find the correlation between year and \(\mathrm{CO}_{2}\) levels. Does the value of the correlation support your answer to part (b)? (d) Use technology to calculate the regression line to predict \(\mathrm{CO}_{2}\) from year. (e) Interpret the slope of the regression line, in terms of carbon dioxide concentrations. (f) What is the intercept of the line? Does it make sense in context? Why or why not? (g) Use the regression line to predict the \(\mathrm{CO}_{2}\) level in \(2003 .\) In \(2020 .\) (h) Find the residual for 2010 . Table 2.31 Concentration of carbon dioxide in the atmosphere $$\begin{array}{lc}\hline \text { Year } & \mathrm{CO}_{2} \\ \hline 1960 & 316.91 \\ 1965 & 320.04 \\\1970 & 325.68 \\ 1975 & 331.08 \\\1980 & 338.68 \\\1985 & 345.87 \\\1990 & 354.16 \\ 1995 & 360.62 \\\2000 & 369.40 \\ 2005 & 379.76 \\\2010 & 389.78 \\ \hline\end{array}$$
Deal with an experiment to study the effects of financial incentives to quit smoking. 19 Smokers at a company were invited to participate in a smoking cessation program and randomly assigned to one of two groups. Those in the Reward group would get a cash award if they stopped smoking for six months. Those in the Deposit group were asked to deposit some money which they would get back along with a substantial bonus if they stopped smoking. The random assignment at the start of the experiment put 1017 smokers in the Reward group and 914 of them agreed to participate. However, only 146 of the 1053 smokers assigned to the Deposit group agreed to participate (since they had to risk some of their own money). Set up a two-way table and compare the participation rates between subjects assigned to the two treatment groups.
What do you think about this solution?
We value your feedback to improve our textbook solutions.