Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Deal with an experiment to study the effects of financial incentives to quit smoking. 19 Smokers at a company were invited to participate in a smoking cessation program and randomly assigned to one of two groups. Those in the Reward group would get a cash award if they stopped smoking for six months. Those in the Deposit group were asked to deposit some money which they would get back along with a substantial bonus if they stopped smoking. After six months, 156 of the 914 smokers who accepted the invitation to be in the reward-only program stopped smoking, while 78 of the 146 smokers who paid a deposit quit. Set up a two-way table and compare the success rates between participants who entered the two programs.

Short Answer

Expert verified
To calculate the success rates, divide the number of people who quit smoking by the total number of people in each program. The Reward program had a success rate of about 17.07%, and the Deposit program had a success rate of about 53.42%. Therefore, it appears that the Deposit program was more effective.

Step by step solution

01

Set up a two-way table

First, organize the given data into a two-way table. The two columns would represent the two groups: Reward and Deposit. The rows would indicate the number of people who quit smoking and those who didn't quit for each group. Based on the given, the table would look like this:| | Reward | Deposit ||---------|------------|-----------|| Quit | 156 | 78 || Didn't | 914-156 | 146-78 |
02

Calculate the success rates

Next, calculate the success rates for both groups. This is done by dividing the number of people who quit smoking by the total number of people who were in the program for each group. The formulas to calculate the success rates would be as follows:Success rate for Reward group = Number who quit (156) / Total (914)Success rate for Deposit group = Number who quit (78) / Total (146)
03

Compare the success rates

Compare the success rates calculated in step 2 by observing which group has a higher success rate, and discuss the comparison in terms of the effectiveness of each program.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ages of Husbands and Wives Suppose we record the husband's age and the wife's age for many randomly selected couples. (a) What would it mean about ages of couples if these two variables had a negative relationship? (b) What would it mean about ages of couples if these two variables had a positive relationship? (c) Which do you think is more likely, a negative or a positive relationship? (d) Do you expect a strong or a weak relationship in the data? Why? (e) Would a strong correlation imply there is an association between husband age and wife age?

Marriage Age vs Number of Children Using the Gapminder software (https://www.gapminder .org/tools), set the vertical axis to Age at 1st marriage (women) and the horizontal axis to Babies per woman. This scatterplot shows the mean age at which woman marry, and the mean number of children they have, for various countries. Click the play icon and observe how the scatterplot changes over time, then answer the following questions: (a) Overall, is there a positive or negative association between \(A\) ge at 1 st marriage and Babies per woman? (b) Describe what happens to the number of babies per woman, and age at 1 st marriage, between 1941 and 1943 in Russia (at the height of World War II). (c) Describe what happens to the number of babies per woman, and the age at 1st marriage, in Libya from 1973 to 2005 .

Give the correct notation for the mean. The average number of yards per punt for all punts in the National Football League is 41.5 yards.

2Does Sexual Frustration Increase the Desire for Alcohol? Apparently, sexual frustration increases the desire for alcohol, at least in fruit flies. Scientists \(^{35}\) randomly put 24 fruit flies into one of two situations. The 12 fruit flies in the "mating" group were allowed to mate freely with many available females eager to mate. The 12 in the "rejected" group were put with females that had already mated and thus rejected any courtship advances. After four days of either freely mating or constant rejection, the fruit flies spent three days with unlimited access to both normal fruit fly food and the same food soaked in alcohol. The percent of time each fly chose the alcoholic food was measured. The fruit flies that had freely mated chose the two types of food about equally often, choosing the alcohol variety on average \(47 \%\) of the time. The rejected males, however, showed a strong preference for the food soaked in alcohol, selecting it on average \(73 \%\) of the time. (The study was designed to study a chemical in the brain called neuropeptide that might play a role in addiction.) (a) Is this an experiment or an observational study? (b) What are the cases in this study? What are the variables? Which is the explanatory variable and which is the response variable? (c) We are interested in the difference in means, where the means measure the average percent preference for alcohol \((0.47\) and 0.73 in this case). Find the difference in means and give the correct notation for your answer, using the correct notation for a mean, subscripts to identify groups, and a minus sign. (d) Can we conclude that rejection increases a male fruit fly's desire for alcohol? Explain.

If we have learned to solve problems by one method, we often have difficulty bringing new insight to similar problems. However, electrical stimulation of the brain appears to help subjects come up with fresh insight. In a recent experiment \({ }^{17}\) conducted at the University of Sydney in Australia, 40 participants were trained to solve problems in a certain way and then asked to solve an unfamiliar problem that required fresh insight. Half of the participants were randomly assigned to receive non-invasive electrical stimulation of the brain while the other half (control group) received sham stimulation as a placebo. The participants did not know which group they were in. In the control group, \(20 \%\) of the participants successfully solved the problem while \(60 \%\) of the participants who received brain stimulation solved the problem. (a) Is this an experiment or an observational study? Explain. (b) From the description, does it appear that the study is double-blind, single-blind, or not blind? (c) What are the variables? Indicate whether each is categorical or quantitative. (d) Make a two-way table of the data. (e) What percent of the people who correctly solved the problem had the electrical stimulation? (f) Give values for \(\hat{p}_{E},\) the proportion of people in the electrical stimulation group to solve the problem, and \(\hat{p}_{S},\) the proportion of people in the sham stimulation group to solve the problem. What is the difference in proportions \(\hat{p}_{E}-\hat{p}_{S} ?\) (g) Does electrical stimulation of the brain appear to help insight?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free